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ii. Abstract: 

An expression was earlier derived for the non-steady state isotopic composition of a leaf 

when the composition of the water entering the leaf was not necessarily the same as that of 

the water being transpired (Farquhar and Cernusak 2005). This was relevant to natural 

conditions because the associated time constant is typically sufficiently long to ensure that 

the leaf water composition and fluxes of the isotopologues are rarely steady. With the advent 

of laser-based measurements of isotopologues, leaves have been enclosed in cuvettes and 

time courses of fluxes recorded. The enclosure modifies the time constant by effectively 
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increasing the resistance to the one-way gross flux out of the stomata because transpiration 

increases the vapour concentration within the chamber. The resistance is increased from 

stomatal and boundary layer in series, to stomata, boundary layer and chamber resistance, 

where the latter is given by the ratio of leaf area to the flow rate out of the chamber. An 

apparent change in concept from one-way to net flux, introduced by Song, Simonin, Loucos 

and Barbour (2015) is resolved, and shown to be unnecessary, but the value of their data is 

reinforced. 
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iv. Main text: 

 
Introduction  

Isotopes of oxygen and hydrogen remain important tools to a wide range of disciplines.  The 

application of water isotopes in plant physiological studies include (1) interpretation of the 

oxygen isotope composition of atmospheric carbon dioxide (Farquhar et al. 1993, Cuntz et al. 

2003; Welp et al. 2011) and of atmospheric oxygen (Dole et al. 1954; Hoffmann et al. 2004; 

Luz & Barkan 2011), (2) estimates of stomatal conductance from measurements of the 

isotopic composition of organic matter, in turn strongly influenced by the leaf water 

composition (Barbour &Farquhar 2000, Werner et al. 2012), (3) estimates of the ‘mesophyll 

conductance’ to carbon dioxide diffusion from the intercellular spaces to the sites of oxygen 

exchange between water and carbon dioxide (Barbour et al. 2016), (4) of the humidity inside 

leaves, which may not always be 100% (Cernusak et al. 2018; Holloway-Phillips et al., 2019; 

Wong et al., unpublished), and (5) partitioning of ecosystem vapour fluxes into transpiration 

and soil evaporation (Yepez et al. 2007).  
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Theoretical consideration and interpretation of experimental data are common for leaf water 

at isotopic steady state, despite widespread recognition that leaf water is unlikely to be at 

isotopic steady state (e.g. Wang and Yakir 1995; Harwood et al. 1998; Simonin et al. 2013; 

Dubbert et al. 2014).  An incorrect assumption of isotopic steady state can cause significant 

errors in interpretation of the influence of leaf water isotope composition on all the 

applications described above.  For example, Yepez et al. (2007) reported errors of up to 25% 

in the proportion of evapotranspiration from transpiration when comparing assumptions of 

leaf water isotopic steady state with non-steady state for a riparian woodland dominated by 

mesquite. 

The formal theory underlying our understanding of leaf water isotope composition originates 

from Dongmann et al.(1974). They derived expressions for the changes in time of leaf water 

isotopic composition. They expressed the changes in terms of a relaxation time, equivalent in 

a first order linear system to a time constant, the time taken for the difference between 

composition and final composition to fall to e-1 of the initial difference.  Their expression for 

the time constant, τ, of such changes was  

𝜏𝜏 = 𝑊𝑊(1−ℎ)
𝐸𝐸

                    (1) 

where W mol water m-2 is the leaf water content, E mol water m-2s-1 is the transpiration rate, h 

(dimensionless) is the relative humidity at leaf temperature. i.e. 

h = wa/wi 

with wa and wi being the ambient and intercellular humidities (mol water vapour/mol moist 

air). Dongmann and colleagues recognised, without writing it out explicitly, that a more 

precise expression was 

𝜏𝜏 = 𝑊𝑊𝛼𝛼𝑘𝑘α+(1−ℎ)
𝐸𝐸

    ,          (2) 
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where αk (>1) is the kinetic fractionation during diffusion from the leaf, and α+ (>1) is the 

fractionation at the liquid/air interface. They also noted “Since E is proportional to (1-h), τ is 

independent of the relative humidity h.” It is unclear why they did not cancel that term of 

proportionality, but it was possibly because there was an intuitive feeling that the ‘turnover 

time’, W/E, had to be involved. 

Farris and Strain (1978) rederived the equations and this time they emphasised the ‘turnover 

rate’, E/W, ‘the fraction of total leaf water volume transpired per unit time’. They carried out 

experiments and were puzzled that the observed time constant was less than W/E.  

Farquhar and Cernusak (2005) divided the numerator and denominator of Eq (2) by (1-h) and 

obtained 

𝜏𝜏 = 𝑊𝑊𝛼𝛼𝑘𝑘α+

𝑔𝑔𝑔𝑔𝑖𝑖
= 𝑊𝑊𝛼𝛼𝑘𝑘α+

𝐸𝐸1
    ,         (3) 

where g is the leaf conductance (stomata and boundary layer in series), and E1 denotes the 

one-way flux out of the leaf. Because E1 is greater than the net transpiration rate, the 

predicted time constant was reduced in magnitude compared to W/E and fitted well the 

observations of changes in leaf water isotopic composition in the field. They further modified 

the equation to take into account the observation that lamina water is often less enriched than 

expected for the sites of evaporation, which they associated with a Péclet effect (Farquhar & 

Lloyd, 1993; Farquhar & Gan, 2003), where enriched water at the sites of evaporation 

diffuses back along the path of liquid water movement, but is opposed by the advection of 

unenriched water. Thus Farquhar & Cernusak assumed that the enrichment of the sites of 

evaporation beyond source water was p (>1) times that of the enrichment of lamina water, 

and Eq (3) became 

𝜏𝜏 = 𝑊𝑊𝛼𝛼𝑘𝑘α+

𝑝𝑝𝑔𝑔𝑔𝑔𝑖𝑖
= 𝑊𝑊𝛼𝛼𝑘𝑘α+

𝑝𝑝𝐸𝐸1
  .           (4) 
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With the advent of laser-based measurements of the various isotopologues (Wang et al., 

2012; Simonin et al., 2013; Dubbert et al., 2014; Song et al., 2015a,b; Dubbert et al., 2017) it 

has become possible to follow the isotopic composition of transpired water in cuvettes and 

thereby infer the changes in leaf composition, in a manner analogous to the introduction of 

gas exchange measurements of carbon dioxide exchange to study carbon assimilation. The 

cuvette introduces an extra element when predicting lamina enrichment and the time constant 

for response. In 2015 Song et al. (2015b) derived expressions for these phenomena that they 

described as suggesting a net-flux-based leaf water turnover. We discuss those ideas later, but 

first derive appropriate equations to describe the response to a step change of the isotopic 

composition of the water vapour in the air entering the chamber. The results apply to both 

18O/16O and 2H/1H in water. 

It may seem somewhat counter-intuitive, and perhaps artificial, to explore leaf water isotopic 

steady state and turnover time through a label introduced through vapour rather than a label 

introduced to the transpiration stream entering the leaf through xylem, given that the net flux 

of water is from the xylem to the atmosphere.  However, it should be kept in mind that under 

some conditions the one-way flux of vapour into the leaf can be up to twice the one-way flux 

of water entering the leaf through the petiole (Farquhar and Cernusak 2005).  Further, field 

studies have confirmed that rapid changes in the stable isotope composition of atmospheric 

vapour are common (Huang & Wen, 2014; Lai & Ehleringer 2011; Lee, Smith, & Williams, 

2006; Tremoy et al., 2012; Yu, Tian, Ma, Xu, & Qu, 2015), and strongly influence the 

isotope composition of both leaf water (Goldsmith et al. 2017) and organic matter (Lehmann 

et al. 2018, 2020). Further studies on the influence of vapour isotopes of leaf water 

enrichment will improve interpretation of observed variation in leaf water and organic 

oxygen isotope compositions.  Finally, label introduction through vapour has a very clear 

experimental advantage over a liquid-phase label in that a clear and rapid step change is able 
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to be applied to the whole leaf (assuming there is no patchy stomatal closure). In contrast, a 

step change in xylem water has a variable lag time because the label will not move at uniform 

rates through the petiole, leaf vasculature and mesophyll, obscuring the effects of the step 

change and making application of mathematical models extremely challenging. 

 

Theory 

To simplify matters we consider the case where gas exchange rates are steady, and the only 

change imposed is the isotopic composition of the water vapour entering the cuvette. We 

ignore ternary effects (von Caemmerer and Farquhar, 1981; Farquhar & Cernusak, 2012). A 

schematic of the model system considered is illustrated in Figure 1.  

The rate of transpiration of the major isotopologue of water is given by 

𝐸𝐸 = 𝑔𝑔𝑖𝑖−𝑔𝑔𝑎𝑎
𝑟𝑟𝑠𝑠+𝑟𝑟𝑏𝑏

   ,            (5) 

where 𝑟𝑟𝑠𝑠 and 𝑟𝑟𝑏𝑏 are the stomatal and boundary layer resistances [m2s (mol air)-1] to the 

diffusion of water vapour. 

The rate of transpiration of the minor isotopologue (eg H2
18O) is then 

𝑅𝑅𝐸𝐸𝐸𝐸 =
𝑅𝑅𝑒𝑒𝑤𝑤𝑖𝑖
𝛼𝛼+

−𝑅𝑅𝑎𝑎𝑔𝑔𝑎𝑎
𝛼𝛼𝑠𝑠𝑟𝑟𝑠𝑠+𝛼𝛼𝑏𝑏𝑟𝑟𝑏𝑏

   ,           (6) 

where R denotes ‘isotope ratio’ (eg 18O /16O), 𝑅𝑅𝐸𝐸 is that of transpired water and 𝑅𝑅𝑒𝑒 is that of 

water at the evaporating sites, and 𝛼𝛼𝑠𝑠 and 𝛼𝛼𝑏𝑏 are the fractionation factors associated with 

stomatal and boundary layer resistances. We now need an expression for 𝑅𝑅𝑎𝑎𝑤𝑤𝑎𝑎 and so we use 

the conservation of the minor isotopologue: 

𝑢𝑢𝑎𝑎𝑅𝑅𝑎𝑎𝑤𝑤𝑎𝑎 = 𝑢𝑢𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑅𝑅𝐸𝐸𝐸𝐸 ,            (7) 
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where  𝑢𝑢𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑎𝑎 are the flow rates of moist air into and out of the chamber, with a humidity 

𝑤𝑤𝑖𝑖𝑖𝑖 and an isotope ratio of 𝑅𝑅𝑖𝑖𝑖𝑖, and 𝑎𝑎 m2 is the leaf area. We consider 𝑅𝑅𝑖𝑖𝑖𝑖 to be a function of 

time, involving a step change at time t=0. It is sometimes convenient to work with the flow 

rate of dry air, 𝑢𝑢𝑑𝑑  , so that 𝑢𝑢𝑎𝑎 = 𝑢𝑢𝑑𝑑
1−𝑔𝑔𝑎𝑎

 and 𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑑𝑑
1−𝑔𝑔𝑖𝑖𝑖𝑖

. Equation 7 becomes 

𝑢𝑢𝑑𝑑
1−𝑔𝑔𝑎𝑎

 𝑅𝑅𝑎𝑎𝑤𝑤𝑎𝑎 = 𝑢𝑢𝑑𝑑
1−𝑔𝑔𝑖𝑖𝑖𝑖

𝑅𝑅𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑅𝑅𝐸𝐸𝐸𝐸     ,(7a) 

and dividing both sides by 𝑢𝑢𝑎𝑎 = 𝑢𝑢𝑑𝑑
1−𝑔𝑔𝑎𝑎

 we obtain 

 𝑅𝑅𝑎𝑎𝑤𝑤𝑎𝑎 = 1−𝑔𝑔𝑎𝑎
1−𝑔𝑔𝑖𝑖𝑖𝑖

𝑅𝑅𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑅𝑅𝐸𝐸𝐸𝐸
𝑢𝑢𝑎𝑎

    .         (8) 

Substituting Equation 8 into Equation 6 and rearranging 

𝑅𝑅𝐸𝐸𝐸𝐸 =
𝑅𝑅𝑒𝑒𝑤𝑤𝑖𝑖
𝛼𝛼+

 − 1−𝑤𝑤𝑎𝑎1−𝑤𝑤𝑖𝑖𝑖𝑖
𝑅𝑅𝑖𝑖𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖

𝛼𝛼𝑠𝑠𝑟𝑟𝑠𝑠+𝛼𝛼𝑏𝑏𝑟𝑟𝑏𝑏+𝑎𝑎/𝑢𝑢𝑎𝑎
 =

𝑅𝑅𝑒𝑒𝑤𝑤𝑖𝑖
𝛼𝛼+

 − 1−𝑤𝑤𝑎𝑎1−𝑤𝑤𝑖𝑖𝑖𝑖
𝑅𝑅𝑖𝑖𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖

𝛴𝛴𝛼𝛼𝑟𝑟
 ,        (9) 

where 𝛴𝛴𝛼𝛼𝑟𝑟=𝛼𝛼𝑠𝑠𝑟𝑟𝑠𝑠 + 𝛼𝛼𝑏𝑏𝑟𝑟𝑏𝑏 + 𝑎𝑎/𝑢𝑢𝑎𝑎.           (10) 

In other words, addition of the chamber adds a non-fractionating resistance, 𝑎𝑎 𝑢𝑢𝑎𝑎⁄ , as shown 

in Figure 1, due to the transpiration-driven increase in humidity surrounding the leaf.  

A step change in 𝑅𝑅𝑖𝑖𝑖𝑖, 𝛿𝛿𝑅𝑅𝑖𝑖𝑖𝑖causes a change 
 − 1−𝑤𝑤𝑎𝑎1−𝑤𝑤𝑖𝑖𝑖𝑖

𝑔𝑔𝑖𝑖𝑖𝑖  𝛿𝛿𝑅𝑅𝑖𝑖𝑖𝑖

𝐸𝐸.𝛴𝛴𝛼𝛼𝑟𝑟
 in 𝑅𝑅𝐸𝐸. In the steady state (a long 

time after the step change in 𝑅𝑅𝑖𝑖𝑖𝑖), the isotope ratio of the transpiration, 𝑅𝑅𝐸𝐸, will equal that of 

the source water, 𝑅𝑅𝑆𝑆, and 𝑅𝑅𝑒𝑒 will be at a steady value of 𝑅𝑅𝑒𝑒𝑠𝑠, while 𝑅𝑅𝑖𝑖𝑖𝑖will be unchanged at 

its value after the step change (t=0+), and so in the steady state Equation (9) becomes 

𝑅𝑅𝑆𝑆𝐸𝐸 =
𝑅𝑅𝑒𝑒𝑠𝑠𝑤𝑤𝑖𝑖
𝛼𝛼+

 − 1−𝑤𝑤𝑎𝑎1−𝑤𝑤𝑖𝑖𝑖𝑖
𝑅𝑅𝑖𝑖𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖

𝛴𝛴𝛼𝛼𝑟𝑟
   .         (11) 

Subtracting the steady-state equation (11) from the transient (in the sense that 𝑅𝑅𝐸𝐸 and 𝑅𝑅𝑒𝑒  will 

be changing, although not 𝑅𝑅𝑖𝑖𝑖𝑖 after t=0+) Equation (9) becomes 
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(𝑅𝑅𝐸𝐸 − 𝑅𝑅𝑆𝑆)𝐸𝐸 =
(𝑅𝑅𝑒𝑒−𝑅𝑅𝑒𝑒𝑠𝑠)𝑤𝑤𝑖𝑖

𝛼𝛼+

𝛴𝛴𝛼𝛼𝑟𝑟
   .         (12) 

Dividing through by 𝑅𝑅𝑆𝑆 we obtain the enrichment, ∈𝐸𝐸= (𝑅𝑅𝐸𝐸 − 𝑅𝑅𝑆𝑆) 𝑅𝑅𝑆𝑆⁄ , of transpired water in 

the transient with respect to the isotope ratio of the source water, and similarly the 

enrichment at the sites of evaporation in the transient, ∈𝑒𝑒= (𝑅𝑅𝑒𝑒 − 𝑅𝑅𝑆𝑆) 𝑅𝑅𝑆𝑆⁄ , and in the steady 

state, ∈𝑒𝑒𝑠𝑠= (𝑅𝑅𝑒𝑒𝑠𝑠 − 𝑅𝑅𝑆𝑆) 𝑅𝑅𝑆𝑆⁄ . This is a change in notation: enrichment was previously denoted 

Δ, but some confusion arose because that symbol is more widely used for discrimination (see 

discussion by Tcherkez (2010), who wrote “La convention internationale est 

malheureusement d’utiliser la notation Δ pour ces enrichissements, ce qui introduit quelque 

peu la confusion avec les fractionnements”). Thus 

∈𝐸𝐸 𝐸𝐸 = (∈𝑒𝑒−∈𝑒𝑒𝑠𝑠)𝑔𝑔𝑖𝑖
𝛼𝛼+.𝛴𝛴𝛼𝛼𝑟𝑟

    .          (13) 

Following Farquhar & Cernusak (2005) we make the assumption that 

 ∈𝑒𝑒
∈𝐿𝐿

= ∈𝑒𝑒𝑠𝑠
∈𝐿𝐿𝑠𝑠

= 𝑝𝑝,            (14)  

where ∈𝐿𝐿 is the enrichment of the whole leaf water compared to source water, so that  

∈𝐸𝐸 𝐸𝐸 = 𝑝𝑝(∈𝐿𝐿−∈𝐿𝐿𝑠𝑠)𝑔𝑔𝑖𝑖
𝛼𝛼+.𝛴𝛴𝛼𝛼𝑟𝑟

   .          (15) 

By expressing all isotopic compositions as enrichments above source water, the flux into the 

leaf from the soil carries no isoflux. This means that the rate of change of ‘isostorage’, the 

product W𝑑𝑑∈𝐿𝐿
𝑑𝑑𝑑𝑑

, is minus the ‘net isoflux’ through the stomata, the product E∈𝐸𝐸, of net flux of 

transpiration, E, and ∈𝐸𝐸 , the enrichment of the transpired water. Thus (Farquhar & Cernusak, 

2005) 

𝑊𝑊𝑑𝑑∈𝐿𝐿
𝑑𝑑𝑑𝑑

= −∈𝐸𝐸 𝐸𝐸  ,                                                                                      (16) 

and using equation (15) this yields  
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𝑊𝑊𝑑𝑑∈𝐿𝐿
𝑑𝑑𝑑𝑑

= −𝑝𝑝(∈𝐿𝐿−∈𝐿𝐿𝑠𝑠)𝑔𝑔𝑖𝑖
𝛼𝛼+𝛴𝛴𝛼𝛼𝑟𝑟

                                                                                                (17) 

which may be integrated 

�
𝑑𝑑(∈𝐿𝐿−∈𝐿𝐿𝑠𝑠)
(∈𝐿𝐿−∈𝐿𝐿𝑠𝑠)

 = � −
𝑑𝑑𝑑𝑑

𝑊𝑊𝛼𝛼+𝛴𝛴𝛼𝛼𝑟𝑟/(𝑝𝑝𝑤𝑤𝑖𝑖)
 

That is 

� 𝑑𝑑𝑑𝑑𝑑𝑑 (∈𝐿𝐿−∈𝐿𝐿𝑠𝑠) = �
𝑑𝑑𝑑𝑑
𝜏𝜏

 

𝑑𝑑𝑑𝑑
(∈𝐿𝐿−∈𝐿𝐿𝑠𝑠)
(∈𝐿𝐿0−∈𝐿𝐿𝑠𝑠) = −

𝑑𝑑
𝜏𝜏
 

or 

∈𝐿𝐿 (𝑑𝑑) =∈𝐿𝐿𝑠𝑠+ (∈𝐿𝐿0−∈𝐿𝐿𝑠𝑠)𝑒𝑒−𝑑𝑑/𝜏𝜏  ,       (18) 

with ∈𝐿𝐿0 being the value of the enrichment of the lamina at time zero, immediately after the 

step change in ambient enrichment (but in this case identical to the value immediately before 

the step change in ∈𝑖𝑖𝑖𝑖); 𝜏𝜏 is the time constant for response and 𝜏𝜏 is given by 

𝜏𝜏 = 𝑊𝑊α+𝛴𝛴𝛼𝛼𝑟𝑟
𝑝𝑝.𝑔𝑔𝑖𝑖

=
𝑊𝑊α+(𝛼𝛼𝑏𝑏.𝑟𝑟𝑏𝑏+𝛼𝛼𝑠𝑠.𝑟𝑟𝑠𝑠+

𝑎𝑎
𝑢𝑢𝑎𝑎

)

𝑝𝑝.𝑔𝑔𝑖𝑖
= 𝑊𝑊.𝛼𝛼𝑘𝑘.α+

𝑝𝑝.𝐸𝐸1
   ,      (19) 

where  

𝐸𝐸1 = 𝑔𝑔𝑑𝑑.𝑤𝑤𝑖𝑖              (20) 

and represents the one-way flux out through the stomata (note the slight change in notation 

compared to Farquhar & Cernusak (2005) who absorbed the factor 𝛼𝛼𝑘𝑘α+into the definition of 

𝐸𝐸1), and 
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𝑔𝑔𝑑𝑑 = 1/(𝑟𝑟𝑏𝑏 + 𝑟𝑟𝑠𝑠 + 𝑎𝑎
𝑢𝑢𝑎𝑎

)              (21) 

is the associated conductance, taking boundary layer and chamber resistances into account, 

and the resistance- weighted kinetic fractionation is 

𝛼𝛼𝑘𝑘 =
(𝛼𝛼𝑏𝑏.𝑟𝑟𝑏𝑏+𝛼𝛼𝑠𝑠.𝑟𝑟𝑠𝑠+

𝑎𝑎
𝑢𝑢𝑎𝑎

)

(𝑟𝑟𝑏𝑏+𝑟𝑟𝑠𝑠+
𝑎𝑎
𝑢𝑢𝑎𝑎

)
  .         (22) 

Given that ∈𝐿𝐿−∈𝐿𝐿𝑠𝑠 has an initial value ∈𝐿𝐿0−∈𝐿𝐿𝑠𝑠 and an exponential response with time 

constant 𝜏𝜏, approaching zero at large t (Equation 18), then so too from Equations (14) does 

∈𝑒𝑒−∈𝑒𝑒𝑠𝑠 and from Equations (17) 𝑑𝑑∈𝐿𝐿
𝑑𝑑𝑑𝑑

 does also, and from Equation (16) transpiration 

enrichment ∈𝐸𝐸, and from Equation (9) it follows that the enrichment, ∈𝐸𝐸1−∈𝐸𝐸1𝑠𝑠, of the one-

way flux out of the leaf does also. From Equation (8), the enrichment of the ambient air 

minus the steady enrichment, ∈𝑎𝑎−∈𝑎𝑎𝑠𝑠, also follows. Thus, the shape of the curve represented 

by Equation (18) becomes generic with  

 

(∈𝐿𝐿−∈𝐿𝐿𝑠𝑠)
(∈𝐿𝐿0−∈𝐿𝐿𝑠𝑠) = 𝑒𝑒−𝑑𝑑/𝜏𝜏 = (∈𝑒𝑒−∈𝑒𝑒𝑠𝑠)

(∈𝑒𝑒0−∈𝑒𝑒𝑠𝑠) =
−𝜏𝜏∙𝑑𝑑∈𝐿𝐿𝑑𝑑𝑑𝑑
∈𝐿𝐿0−∈𝐿𝐿𝑠𝑠

= ∈𝐸𝐸
∈𝐸𝐸0

= ∈𝐸𝐸1−∈𝐸𝐸1𝑠𝑠
∈𝐸𝐸10−∈𝐸𝐸1𝑠𝑠

= ∈𝑎𝑎−∈𝑎𝑎𝑠𝑠
∈𝑎𝑎0−∈𝑎𝑎𝑠𝑠

  (23) 

 

From the foregoing, and noting that the enrichment of transpiration rate over source water is 

zero in the steady state, we can describe the isofluxes at time zero, when the disturbance is 

greatest, by 

𝐸𝐸.∈𝐸𝐸0= −𝐸𝐸1. (∈𝐸𝐸1𝑠𝑠−∈𝐸𝐸10) = −𝐸𝐸1.(∈𝑒𝑒𝑠𝑠−∈𝑒𝑒0)
𝛼𝛼𝑘𝑘.α+

=- 𝐸𝐸1 .𝑝𝑝(∈𝐿𝐿𝑠𝑠−∈𝐿𝐿0)
𝛼𝛼𝑘𝑘.α+

 =
 − 1−𝑤𝑤𝑎𝑎1−𝑤𝑤𝑖𝑖𝑖𝑖

𝑔𝑔𝑖𝑖𝑖𝑖(∈𝑖𝑖𝑖𝑖−∈𝑖𝑖𝑖𝑖(𝑑𝑑=0−))

𝛴𝛴𝛼𝛼𝑟𝑟
  , 

   (24) 
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So a step change (assume an increase for argument’s sake) in ∈𝑖𝑖𝑖𝑖 from its previous value 

∈𝑖𝑖𝑖𝑖 (𝑑𝑑 = 0−) causes an initial positive step change in ∈𝑎𝑎 and that causes a negative step 

change in ∈𝐸𝐸 leading to the negative initial value of ∈𝐸𝐸0, followed by an exponential 

recovery to zero. See Figure 2 for an illustration. The negative ∈𝐸𝐸 causes ∈𝐿𝐿 and ∈𝑒𝑒 and 

hence ∈𝐸𝐸1 to commence to increase. An important point is that for the previous equations to 

make sense, time zero starts just after the step change in ∈𝑖𝑖𝑖𝑖, ∈𝑎𝑎, and ∈𝐸𝐸 and thus ∈𝑖𝑖𝑖𝑖 for our 

purposes is taken as a constant for t=0+. Again, the steady state refers to the settled condition 

after the responses to the step change, and not to any steady state before the step change. For 

an example system characterised by the parameters in Table 1, the theoretical enrichment 

responses to a step increase in ∈𝑖𝑖𝑖𝑖 are presented in Figure 2 and Table 2.  

Referring again to Equation (23), after a positive step change in ∈𝑖𝑖𝑖𝑖 there is a transient period 

characterised by ∈𝑎𝑎0<∈𝑎𝑎𝑠𝑠, ∈𝐸𝐸0<∈𝐸𝐸𝑠𝑠, ∈𝑒𝑒0<∈𝑒𝑒𝑠𝑠, ∈𝐿𝐿0<∈𝐿𝐿𝑠𝑠, 
𝑑𝑑∈𝐿𝐿
𝑑𝑑𝑑𝑑

(0) >

𝑑𝑑∈𝐿𝐿
𝑑𝑑𝑑𝑑

(𝑠𝑠) [see Table 2 for examples], and vice versa for all if the initial change in ∈𝑖𝑖𝑖𝑖 was 

negative.  

Verification 

It is a property of the first order linear differential equations like (18) that the initial speed of 

action in elimination of the transient enrichment (∈𝐿𝐿0−∈𝐿𝐿𝑠𝑠), if maintained, would have the 

task completed in time τ. This may be seen by differentiating Equation (18) with respect to 

time 

𝑑𝑑∈𝐿𝐿
𝑑𝑑𝑑𝑑

= −1
𝜏𝜏

(∈𝐿𝐿0−∈𝐿𝐿𝑠𝑠)𝑒𝑒−𝑑𝑑/𝜏𝜏           (25) 

and examining the value at time t=0: 

𝑑𝑑∈𝐿𝐿
𝑑𝑑𝑑𝑑

= −1
𝜏𝜏

(∈𝐿𝐿0−∈𝐿𝐿𝑠𝑠)            (26)  
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showing that the initial enrichment would disappear in time τ, if the initial rate were 

maintained. Of course the rate declines and at time τ the enrichment has only reduced to 

(∈𝐿𝐿0−∈𝐿𝐿𝑠𝑠)𝑒𝑒−1, i.e. to 0.37 of its initial value. See Figure 3. 

The expression for τ (Equation 19) may be examined in this light, by multiplying above and 

below by (∈𝑒𝑒0−∈𝑒𝑒𝑠𝑠),  

𝜏𝜏 = 𝑊𝑊.𝛼𝛼𝑘𝑘.α+

𝑝𝑝.𝐸𝐸1
= 𝑊𝑊.(∈𝑒𝑒0−∈𝑒𝑒𝑠𝑠)

𝑝𝑝
. 𝛼𝛼𝑘𝑘.α+

(∈𝑒𝑒0−∈𝑒𝑒𝑠𝑠).𝐸𝐸1
  .       (27) 

But from Equation (14) 

𝑊𝑊.(∈𝑒𝑒0−∈𝑒𝑒𝑠𝑠)
𝑝𝑝

= 𝑊𝑊. (∈𝐿𝐿0−∈𝐿𝐿𝑠𝑠)  

and this is divided by 

(∈𝑒𝑒0−∈𝑒𝑒𝑠𝑠).𝐸𝐸1
𝛼𝛼𝑘𝑘.α+

=  (∈𝐸𝐸10−∈𝐸𝐸1𝑠𝑠).𝐸𝐸1  

so that Equation (27) becomes 

𝜏𝜏 = 𝑊𝑊.(∈𝐿𝐿0−∈𝐿𝐿𝑠𝑠) 
𝐸𝐸1(∈𝐸𝐸10−∈𝐸𝐸1𝑠𝑠) .             (28) 

which can be interpreted as 𝑊𝑊. (∈𝐿𝐿0−∈𝐿𝐿𝑠𝑠) representing the enrichment (‘isostorage’) to be 

‘removed’, and 𝐸𝐸1(∈𝐸𝐸10−∈𝐸𝐸1𝑠𝑠)  being the isoflux doing the removal.  

Of course, from Equation (23) the denominator of Equation (27) is identical to the isoflux 

carried by net transpiration, 𝐸𝐸.∈𝐸𝐸0,  so that 𝜏𝜏 can also be written as 

𝜏𝜏 = 𝑊𝑊.(∈𝐿𝐿0−∈𝐿𝐿𝑠𝑠) 
𝐸𝐸.∈𝐸𝐸0

    ,            (29) 

which is a more intuitive formula. The equivalence of Equations (28) and (29) may at first 

sight be confusing. The numerators or isostorage are of course identical. The denominators or 

isofluxes are also equal, but the one-way flux 𝐸𝐸1 is greater than the net flux, E, meaning that 
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the enrichment of the transpiration flux ∈𝐸𝐸0 must be greater than (∈𝐿𝐿0−∈𝐿𝐿𝑠𝑠) by an equal 

proportion, as was indeed shown in the derivation of Equation (27). We also see that the 

isostorage would be eliminated in time 𝜏𝜏 if the isoflux remained steady at the initial rate of 

𝐸𝐸.∈𝐸𝐸0.  

Why is 𝜏𝜏 given to a good approximation by W/E1, where E1 is the one-way flux out of the 

leaf, and not by W/E, where E is the net transpiration rate? Consider the total flux coming 

into a leaf. A flux 𝑔𝑔𝑑𝑑𝑤𝑤′𝑖𝑖𝑖𝑖 (where 𝑤𝑤′𝑖𝑖𝑖𝑖 =  1−𝑔𝑔𝑎𝑎
1−𝑔𝑔𝑖𝑖𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖) enters in the gas phase through the 

stomata, and E enters through the petiole. So the total flux entering the leaf is E+𝑔𝑔𝑑𝑑𝑤𝑤′𝑖𝑖𝑖𝑖. But 

E=𝑔𝑔𝑑𝑑.wi-𝑔𝑔𝑑𝑑𝑤𝑤𝑖𝑖𝑖𝑖, so E+𝑔𝑔𝑑𝑑𝑤𝑤𝑖𝑖𝑖𝑖=𝑔𝑔𝑑𝑑.wi and that is why it is the flux 𝑔𝑔𝑑𝑑.wi that must turn over W 

mol.m-2, which would take (at the initial rate) W/(𝑔𝑔𝑑𝑑.wi) seconds. Hence 𝜏𝜏 ≈ 𝑊𝑊
𝑔𝑔𝑑𝑑𝑔𝑔𝑖𝑖

 

Summarising the theory thus far, Equation (4) (Farquhar & Cernusak 2005) has been 

modified to Equation (19) to include the additional chamber resistance a/u (m2s.mol-1) [which 

does not fractionate], but the overall form is unchanged, with the time constant of relaxation 

remaining as the leaf water content divided by the one-way efflux, with the corrections for 

fractionation and the Péclet effect equivalent to those as found in Equation (4). The Péclet 

term, p, arises as the correction made to the volume of the leaf to account for water that is 

unenriched, or inaccessible. We recognise that p is at this stage a largely empirical correction. 

Hence W is replaced by W/p and so 𝜏𝜏 ≈ 𝑊𝑊
𝑝𝑝∙𝑔𝑔𝑑𝑑𝑔𝑔𝑖𝑖

. 

Discussion 

Comparison with Song et al. (2015) 

Song et al. (2015) derived equations (here with numbers denoted S) to deal with the effect of 

including a chamber and came to a different conclusion. They noted on page 2626 that 

“emphasizing a ‘gross flux’ was previously discussed by Farquhar & Cernusak (2005), who 

This article is protected by copyright. All rights reserved.



pointed out that alternate use of ‘net flux’-based leaf water turnover time (i.e. W/E) is 

incorrect and can potentially lead to biased interpretation of NSS ΔL data. However, it is 

interesting that such a ‘gross flux’ viewpoint is no longer valid in our cuvette experimental 

setting, as Eqn S21* clearly indicates that it is W/E but not W/g.wi that exerts control on τ. 

Our observation that the new model predicted a larger time constant than did the F&C model 

is therefore a reflection of the fact that ‘net-flux’-based leaf water turnover is slower than its 

‘gross-flux’ based counterpart (i.e.W/E >W/g.wi).”  

The present treatment (Equation 19), in contrast, suggests that the reason for the larger time 

constant when a chamber is present is because the one-way flux, E1, is reduced by the 

presence of the additional (chamber) resistance, a/u. It is easy to see that as the flow rate, u, 

increases, the solution degenerates to that derived by Farquhar & Cernusak for the case where 

there is no chamber. 

Song et al. (2015b) showed that their Equation matched observations of changes with time in 

the isotopic composition of transpired water. How can this be resolved? 

Equation S21 to which Song et al. refer (above) was written as follows: 

𝜏𝜏 ≈ (1 − 𝑓𝑓)𝑊𝑊/𝐸𝐸 

where (1-f) is equivalent to 1/p above. It may be seen from Equation 19 that this relationship 

only works when E=E1, and this is only the case when the incoming air is dry (𝑤𝑤𝑖𝑖𝑖𝑖 = 0). 

Indeed their experiments were carried out with dry incoming air. However, the experimental 

comparison was not with Equation S21, but with their more detailed Equation S20: 

𝜏𝜏 = (1 − 𝑓𝑓).𝑊𝑊
𝐸𝐸

.𝛼𝛼+[𝛼𝛼𝑘𝑘(1−𝑔𝑔𝑎𝑎
𝑔𝑔𝑖𝑖

) + (𝑔𝑔𝑎𝑎
𝑔𝑔𝑖𝑖

)] 

Equation S20 was actually a simplification of what was written in their Equation (S14) as 
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𝜏𝜏 = (1 − 𝑓𝑓).
𝑊𝑊
𝐸𝐸

.𝛼𝛼+.𝐾𝐾 

= (1 − 𝑓𝑓).𝑊𝑊
𝐸𝐸

.𝛼𝛼+[𝛼𝛼𝑘𝑘(1-𝑔𝑔𝑎𝑎
𝑔𝑔𝑖𝑖

) + (𝑔𝑔𝑎𝑎−𝑔𝑔𝑖𝑖𝑖𝑖
𝑔𝑔𝑖𝑖

)( 1
1−𝑔𝑔𝑖𝑖𝑖𝑖

)]        (S14) 

However the square-bracketed term in Equation S14, which they denoted as K, may be 

rewritten as 

𝐾𝐾= �𝛼𝛼𝑘𝑘 �1 − 𝑔𝑔𝑎𝑎
𝑔𝑔𝑖𝑖
� + �𝑔𝑔𝑎𝑎−𝑔𝑔𝑖𝑖𝑖𝑖

𝑔𝑔𝑖𝑖
� � 1

1−𝑔𝑔𝑖𝑖𝑖𝑖
�� = [𝛼𝛼𝑘𝑘𝐸𝐸(𝑟𝑟𝑏𝑏+𝑟𝑟𝑠𝑠

𝑔𝑔𝑖𝑖
) + (𝑔𝑔𝑎𝑎−𝑔𝑔𝑖𝑖𝑖𝑖

𝑔𝑔𝑖𝑖
)( 1
1−𝑔𝑔𝑖𝑖𝑖𝑖

)] 

and because their experiments were with dry air entering the chamber (win=0), K was 

approximately 1, so that the time constant would appear to relate to W/E. However use of dry 

air is not generally the case. It is shown in Appendix 1 that  

(𝑔𝑔𝑎𝑎−𝑔𝑔𝑖𝑖𝑖𝑖
1−𝑔𝑔𝑖𝑖𝑖𝑖

)=𝑎𝑎𝐸𝐸
𝑢𝑢𝑎𝑎

. 

So that  

𝐾𝐾= [𝛼𝛼𝑘𝑘𝐸𝐸(𝑟𝑟𝑏𝑏+𝑟𝑟𝑠𝑠
𝑔𝑔𝑖𝑖

) + 𝑎𝑎𝐸𝐸
𝑢𝑢𝑎𝑎𝑔𝑔𝑖𝑖

] 

And recognising that in their notation 𝛼𝛼𝑘𝑘 = 𝑎𝑎𝑏𝑏.𝑟𝑟𝑏𝑏+𝑎𝑎𝑠𝑠.𝑟𝑟𝑠𝑠
𝑟𝑟𝑏𝑏+𝑟𝑟𝑠𝑠

 this means that Equation S14 may be 

rewritten as 

𝜏𝜏 =
(1 − 𝑓𝑓)𝑊𝑊α+(𝛼𝛼𝑏𝑏 . 𝑟𝑟𝑏𝑏 + 𝛼𝛼𝑠𝑠. 𝑟𝑟𝑠𝑠 + 𝑎𝑎

𝑢𝑢𝑎𝑎
)

𝑤𝑤𝑖𝑖
=

(1 − 𝑓𝑓)𝑊𝑊.𝛼𝛼𝑘𝑘.α+

𝐸𝐸1
 

 which is numerically and algebraically equivalent to Equation (19) above, with p replaced by 

1/(1-f). It confirms that even when a chamber is used it is still the one-way flux that is 

determining the time constant. Put simply, it is the one-way flux E1 that determines the time 

constant, and if the incoming air happens to be perfectly dry then E1 equals E, the 

transpiration rate. 
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All the equations discussed above are derived assuming that the leaf water content W is 

unchanging. If W is not steady the analytical solution becomes that given in Equations (27) of 

Farquhar and Cernusak (2005), with E1 adjusted for the extra chamber resistance.  

On the ratio of evaporative site enrichment to lamina enrichment 

The ratio, p (>1), of evaporative site enrichment to lamina enrichment, ∈𝑒𝑒/∈𝐿𝐿 , derives from 

Péclet theory (Farquhar & Lloyd, 1993) and the Péclet number, 𝑃𝑃, as 

∈𝐿𝐿/∈𝑒𝑒= 1/𝑝𝑝 = 1−𝑒𝑒−𝑃𝑃

𝑃𝑃
≈ 1 − 𝑃𝑃 2⁄  

and since Song et al. (2015) defined (1-f ) as ∈𝐿𝐿/∈𝑒𝑒 it means that 𝑓𝑓 ≈ 𝑃𝑃/2 . From the results 

of their experiments, a typical value of f was 0.15 for both 2H/1H and 18O/16O, implying that 

P would be about 0.3 if the effect was a Péclet one. Holloway-Phillips at al. (2016), also 

working with cotton, obtained values of f of about 0.3, implying an even greater value of P, if 

the Péclet effect is the source of non-zero f. Of course, f may well represent the proportion of 

leaf water that is not isotopically accessible on the time scale of the experiment. 

Our recent experimental study (Barbour et al. 2020) indicates a possible mechanistic link 

between the hydraulic design of leaves and the presence of Péclet-like responses of leaf water 

18O enrichment to transpiration rate.  Leaves with hydraulically well-connected vasculature 

and epidermes, but hydraulically isolated mesophyll (hydraulic design two, as described by 

Zwieniecki, Brodribb and Holbrook 2007), were found to have leaf water isotope 

compositions best modelled by a Péclet effect.  In contrast, leaves with either hydraulically 

isolated mesophyll and epidermes (hydraulic design one), or hydraulically connected 

mesophyll (hydraulic design three) had leaf water isotope compositions best modelled using a 

simple two-pool approach without a strong Péclet effect.  More species, and more diversity in 

leaf anatomy and hydraulic architecture, are required to determine the generality of these 
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observations. However, the suggestion above that f may represent the proportion of leaf water 

that is not isotopically accessible, implies hydraulically- and isotopically-distinct pools of 

water in the leaf consistent with hydraulic design one which is common in coniferous needles 

for example.  As Simonin et al. (2013) point out, multiple pools of isotopically-distinct water 

in leaves may each have different turn-over times which would complicate mathematical 

modelling and experimental interpretation. We are currently assessing experimental data to 

determine if this additional complication is warranted; note that Simonin et al. (2013) found 

no evidence of more than one pool in experimental data using citrus and tobacco leaves. 

 

Effect of adding a cuvette 

The effect on the transpiration rate of adding a leaf of a m2 to a cuvette with air flow after the 

chamber of 𝑢𝑢𝑎𝑎 mol s-1 is essentially that of adding a resistance of a/𝑢𝑢𝑎𝑎. An analogous effect 

occurs for the description of CO2 assimilation rate, A (Farquhar, 1973). Consider a leaf where 

a simplified description is  

𝐴𝐴 =
𝐶𝐶𝑎𝑎 − 𝛤𝛤

𝑟𝑟𝑏𝑏𝑐𝑐 + 𝑟𝑟𝑠𝑠𝑐𝑐 + 𝑟𝑟𝑚𝑚 
𝑐𝑐 + 𝑟𝑟𝑐𝑐ℎ𝑒𝑒𝑚𝑚 

𝑐𝑐  

where 𝐶𝐶𝑎𝑎 is the ambient [CO2] and 𝛤𝛤 is the CO2 compensation point, and the resistances are 

those of the boundary layer, the stomata, the mesophyll, and the underlying biochemistry. 

This expression works if 𝐶𝐶𝑎𝑎 is an independent variable. If the concentration entering the 

chamber, 𝐶𝐶𝑖𝑖𝑖𝑖 , is the independent variable, then the above equation is modified to 

𝐴𝐴 =
1−𝑤𝑤𝑎𝑎
1−𝑤𝑤𝑖𝑖𝑖𝑖

𝐶𝐶𝑖𝑖𝑖𝑖−𝛤𝛤

𝑟𝑟𝑏𝑏
𝑐𝑐+𝑟𝑟𝑠𝑠𝑐𝑐+𝑟𝑟𝑚𝑚 

𝑐𝑐 +𝑟𝑟𝑐𝑐ℎ𝑒𝑒𝑚𝑚 
𝑐𝑐 +𝑎𝑎/𝑢𝑢𝑎𝑎

  . 
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There is another effect of adding a cuvette. The volume of the chamber and associated tubing 

and apparatus upstream of the leaf (V mol) introduces a delay of 𝜏𝜏𝑎𝑎 = V/ua. If the cuvette is 

sufficiently small and the flow rate sufficiently large, the delay would be less than a minute, 

and insignificant compared to τ in most leaves. However, for some experiments where one 

wants to assess the whole leaf, or perhaps a whole plant, larger cuvettes are necessary, and so 

in Appendix 2 we solve for the inclusion of cuvette volume, assumed to be well mixed. The 

resulting expressions for ambient and leaf water enrichment respectively, are: 

∈𝑎𝑎 (𝑑𝑑) =∈𝑎𝑎𝑠𝑠− �𝛽𝛽𝑒𝑒−
t
𝜏𝜏1 +  𝛾𝛾𝑒𝑒−

t
𝜏𝜏2� (𝜏𝜏2 − 𝜏𝜏1)�      (A43) 

and 

∈𝐿𝐿 (𝑑𝑑) =∈𝐿𝐿𝑠𝑠 − �𝜔𝜔𝑒𝑒−
t
𝜏𝜏1 +  𝜃𝜃𝑒𝑒−

t
𝜏𝜏2� (𝜏𝜏2 − 𝜏𝜏1)�     (A44) 

 where,                

𝛽𝛽 =  ∈𝑎𝑎𝑠𝑠 (𝜏𝜏 − 𝜏𝜏1 ) −∈𝑎𝑎0 (𝜏𝜏2 − 𝜏𝜏𝑎𝑎) −  (∈𝐿𝐿𝑠𝑠−∈𝐿𝐿0)𝑏𝑏𝜏𝜏𝑎𝑎    

γ =  ∈𝑎𝑎𝑠𝑠 (𝜏𝜏 − 𝜏𝜏2)−∈𝑎𝑎0 (𝜏𝜏1 − 𝜏𝜏𝑎𝑎) − (∈𝐿𝐿𝑠𝑠−∈𝐿𝐿0)𝑏𝑏𝜏𝜏𝑎𝑎   

𝜔𝜔 =  ∈𝐿𝐿𝑠𝑠 (𝜏𝜏𝑎𝑎 − 𝜏𝜏1 ) −∈𝐿𝐿0 (𝜏𝜏 − 𝜏𝜏2) −  (∈𝑎𝑎𝑠𝑠−∈𝑎𝑎0)𝜐𝜐𝜏𝜏    

θ = ∈𝐿𝐿𝑠𝑠 (𝜏𝜏2 − 𝜏𝜏𝑎𝑎) − ∈𝐿𝐿0 (𝜏𝜏1 − 𝜏𝜏) − (∈𝑎𝑎0−∈𝑎𝑎𝑠𝑠)𝜐𝜐𝜏𝜏  

𝑣𝑣 = 𝑉𝑉
𝑢𝑢𝑎𝑎

𝑔𝑔𝑎𝑎
𝛴𝛴𝛼𝛼𝑟𝑟.𝑊𝑊 

   

 𝑏𝑏 = 𝑎𝑎𝑊𝑊
𝑉𝑉𝑔𝑔𝑎𝑎 

   (the ratio of the amount of liquid water in the leaf to the amount of water vapour 

in the cuvette system.) 

and 𝜏𝜏2 is the modified 𝜏𝜏, and 𝜏𝜏1the modified 𝜏𝜏𝑎𝑎. 
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Figure 4 illustrates the difference accounting for a range of delays (𝜏𝜏𝑎𝑎 = V/ua) associated 

with the cuvette and upstream apparatus makes to the response of ∈𝑎𝑎 and ∈𝐿𝐿 over time.  

The analysis given here will, we hope, be useful for studies of water relations, including 

water movement in leaves, and in isotope hydrology more generally. It may be of interest, 

also, as an analog of large-scale gas exchange, such as that discussed by Helliker et al. 

(2004).  
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viii.  Figure Legends 

Figure 1: Schematic of model system comprising a leaf enclosed within a cuvette.  

Top: moist air enters the cuvette with flow rate 𝑢𝑢𝑖𝑖𝑖𝑖  [mol moist air s-1] , humidity 𝑤𝑤𝑖𝑖𝑖𝑖 [mol 

water vapour/mol moist air], and isotope ratio 𝑅𝑅𝑖𝑖𝑖𝑖; and exits with flow rate  𝑢𝑢𝑎𝑎, humidity  𝑤𝑤𝑎𝑎, 
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and isotope ratio 𝑅𝑅𝑎𝑎. The leaf of area 𝑎𝑎 [m2 ] contains water (𝑊𝑊 [mol water m-2 ]) at 𝑅𝑅𝐿𝐿 . The 

flux into the leaf from the stem 𝐽𝐽 [mol water m-2s-1] carries source water with isotopic 

composition 𝑅𝑅𝑠𝑠 and the net flux out from it by transpiration, 𝐸𝐸  [mol water m-2 s-1], carries 

water vapour at 𝑅𝑅𝐸𝐸.  

Inset: The components of the net transpiration flux, namely the one way gross flux out (𝐸𝐸1) 

and in (E1-E) through the stomata are represented by red dashed arrows. The effect of the 

cuvette is to increase the resistance by adding the chamber resistance 𝑎𝑎/𝑢𝑢𝑎𝑎 to the stomatal 

and boundary layer resistance (𝑟𝑟𝑠𝑠 and 𝑟𝑟𝑏𝑏) in series. The gross fluxes can be thought of as a 

flux out from the leaf where humidity is 𝑤𝑤𝑖𝑖 and a flux in from the air where humidity is  

𝑤𝑤′𝑖𝑖𝑖𝑖 = 1−𝑔𝑔𝑎𝑎
1−𝑔𝑔𝑖𝑖𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖. 

The isotopic composition of water at the evaporating sites is 𝑅𝑅𝑒𝑒 and that of the intercellular 

vapour leaving the leaf (light blue) is 𝑅𝑅𝑒𝑒/𝛼𝛼+, whilst the vapour entering is 𝑅𝑅𝑖𝑖𝑖𝑖. 

Figure 2:  Enrichment responses to a step increase in the enrichment of water vapour entering 

a cuvette  𝜖𝜖𝑖𝑖𝑖𝑖, ignoring any time delay introduced by the cuvette and associated volume. 

Figure 3: All enrichment responses to either a step increase (as in figure 2) or step decrease in 

the enrichment of water vapour entering a cuvette,  𝜖𝜖𝑖𝑖𝑖𝑖, can be represented by a single generic 

exponential function when scaled according to Eq. 23 (ignoring any time delay introduced by 

the cuvette and associated volume, i.e. V=0). 

Figure 4: The effect of accounting for the time delay introduced by the cuvette and associated 

volume on the response of  𝜖𝜖𝑎𝑎 and 𝜖𝜖𝐿𝐿 for the example illustrated in figure 2 (a step increase 

in 𝜖𝜖𝑖𝑖𝑖𝑖 at t=0).  

 𝜖𝜖𝑎𝑎 (black dash) and 𝜖𝜖𝐿𝐿(green dash) are reproduced from figure 2 and ignore the time delay 

introduced by the cuvette and associated volume (i.e  V=0 and  τ𝑎𝑎 = 0). The series of 
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curves 𝜖𝜖𝑎𝑎 (red) and 𝜖𝜖𝐿𝐿(blue) are produced using equation A43 and A44, respectively, account 

for a range of characteristic times, 𝜏𝜏𝑎𝑎 related to a non-zero volume, V. 

ix.  Table Legends 

Table 1: Parameters characterising the example theoretical system that is subjected to a step 

increase in the enrichment of water vapour entering the cuvette,  𝜖𝜖𝑖𝑖𝑖𝑖 in figure 2. 

Table 2: Calculated enrichment values just prior to and immediately after a 82.1 ‰ step 

increase in  𝜖𝜖𝑖𝑖𝑖𝑖 for the example described in Table 1 and illustrated in figure 2. Steady state is 

assumed just prior to the step increase (at  𝑑𝑑 = 0− ) to determine the enrichment values just 

prior to the increase. The time constant, τ predicted by the theory (Eqn 19) is used to model 

the transient response of the enrichments following the step increase as they approach steady 

state in figure 2. 
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xi. Tables: 

Table 1: Parameters characterising the example theoretical system that is subjected to a step 

increase in the enrichment of water vapour entering the cuvette,  𝜖𝜖𝑖𝑖𝑖𝑖 in figure 2. 

Rin (t= 0-) 1.985 ×  10−3  

Rin (t ≥ 0) 2.153 ×  10−3  

RS 1.997 ×  10−3  

 𝜖𝜖𝑖𝑖𝑖𝑖(t= 0-) −5.91 ‰  

 𝜖𝜖𝑖𝑖𝑖𝑖(t ≥ 0) 77.8 ‰  

A 1.2 ×  10−3 m2 

uin 600 ×  10−6 mol s-1 

win 9.20 ×  10−3 mol mol-1 

ua 606 ×  10−6 mol s-1 

wa 19.8 × 10−3 mol mol-1  

wi 34 × 10−3 mol mol-1  

E  5.4 mmol m-2 s-1 

E1 7.4 mmol m-2 s-1 

Tleaf 25 °C 

rs 2.30 m2 s mol-1 

rb 0.33 m2 s mol-1 

W 18.7 mol m-2 

P 1.44  
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Table 2: Calculated enrichment values just prior to and immediately after a 82.1 ‰ step 

increase in  𝜖𝜖𝑖𝑖𝑖𝑖 for the example described in Table 1 and illustrated in figure 2. Steady state is 

assumed just prior to the step increase (at  𝑑𝑑 = 0− ) to determine the enrichment values just 

prior to the increase. The time constant, τ predicted by the theory (Eqn 19) is used to model 

the transient response of the enrichments following the step increase as they approach steady 

state in figure 2. 

 𝜖𝜖𝑎𝑎𝑠𝑠(t= 0-) ∈𝑎𝑎𝑠𝑠 (𝑑𝑑 = 0−) = 𝑔𝑔′
𝑖𝑖𝑖𝑖

𝑔𝑔𝑎𝑎
(1 +∈𝑖𝑖𝑖𝑖 (𝑑𝑑 = 0−))+ 𝑎𝑎𝐸𝐸

𝑢𝑢𝑎𝑎𝑔𝑔𝑎𝑎
 -1 −2.7 ‰  

 𝜖𝜖𝑎𝑎(t= 0+) ∈𝑎𝑎0= 𝑔𝑔′
𝑖𝑖𝑖𝑖

𝑔𝑔𝑎𝑎
(1 +∈𝑖𝑖𝑖𝑖)+ 𝑎𝑎𝐸𝐸

𝑢𝑢𝑎𝑎𝑔𝑔𝑎𝑎
(1 + 𝑤𝑤′

𝑖𝑖𝑖𝑖(∈𝑖𝑖𝑖𝑖(𝑑𝑑=0−)−∈𝑖𝑖𝑖𝑖
𝐸𝐸 ∑𝛼𝛼𝑟𝑟

))-1 

where  𝑤𝑤′𝑖𝑖𝑖𝑖 = 1−𝑔𝑔𝑎𝑎
1−𝑔𝑔𝑖𝑖𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖 

 19.5‰  

 𝜖𝜖𝑎𝑎𝑠𝑠 ∈𝑎𝑎𝑠𝑠= 𝑔𝑔′
𝑖𝑖𝑖𝑖

𝑔𝑔𝑎𝑎
(1 +∈𝑖𝑖𝑖𝑖)+ 𝑎𝑎𝐸𝐸

𝑢𝑢𝑎𝑎𝑔𝑔𝑎𝑎
 -1 35.8‰ 

 𝜖𝜖𝑒𝑒𝑠𝑠(t= 0-) 
∈𝑒𝑒𝑠𝑠 (𝑑𝑑 = 0−) =

𝐸𝐸�∑𝛼𝛼𝑟𝑟 + 𝑤𝑤′
𝑖𝑖𝑖𝑖�1 +∈𝑖𝑖𝑖𝑖 (𝑑𝑑 = 0−)�
𝑤𝑤𝑖𝑖/𝛼𝛼+

− 1 
  19.1‰  

 𝜖𝜖𝑒𝑒(t= 0+) ∈𝑒𝑒0 =  ∈𝑒𝑒𝑠𝑠 (𝑑𝑑 = 0−)  19.1‰  

 𝜖𝜖𝑒𝑒𝑠𝑠 ∈𝑒𝑒𝑠𝑠=
𝐸𝐸�∑𝛼𝛼𝑟𝑟 + 𝑤𝑤′

𝑖𝑖𝑖𝑖(1 +∈𝑖𝑖𝑖𝑖)
𝑤𝑤𝑖𝑖/𝛼𝛼+

− 1 
41.7‰ 

 𝜖𝜖𝐸𝐸𝑠𝑠(t= 0-) ∈𝐸𝐸𝑠𝑠 (𝑑𝑑 = 0−) =  0 0 ‰  

 𝜖𝜖𝐸𝐸(t= 0+) 
∈𝐸𝐸0=

−𝑤𝑤′
𝑖𝑖𝑖𝑖�∈𝑖𝑖𝑖𝑖−∈𝑖𝑖𝑖𝑖 (𝑑𝑑 = 0−)�

𝐸𝐸 ∑𝛼𝛼𝑟𝑟
 

−30.1‰  

 𝜖𝜖𝐸𝐸𝑠𝑠 ∈𝐸𝐸𝑠𝑠= 0 0 ‰ 

 𝜖𝜖𝐿𝐿𝑠𝑠(t= 0-) 
∈𝐿𝐿𝑠𝑠 (𝑑𝑑 = 0−) = �

𝐸𝐸 ∙ Σ𝛼𝛼𝑟𝑟 + 𝑤𝑤′𝑖𝑖𝑖𝑖(1 +∈𝑖𝑖𝑖𝑖 (𝑑𝑑 = 0−))
𝑤𝑤𝑖𝑖/𝛼𝛼+

− 1� /𝑝𝑝 
 13.3 ‰  
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 𝜖𝜖𝐿𝐿(t= 0+) ∈𝐿𝐿0= ∈𝐿𝐿𝑠𝑠 (𝑑𝑑 = 0−)   13.3‰  

 𝜖𝜖𝐿𝐿𝑠𝑠 ∈𝐿𝐿𝑠𝑠= �
𝐸𝐸 ∙ Σ𝛼𝛼𝑟𝑟 + 𝑤𝑤′𝑖𝑖𝑖𝑖(1 +∈𝑖𝑖𝑖𝑖)

𝑤𝑤𝑖𝑖/𝛼𝛼+
− 1� /𝑝𝑝 

29.0‰ 

τ 𝜏𝜏 = 𝑊𝑊.𝛼𝛼𝑘𝑘.α+

𝑝𝑝.𝐸𝐸1
    1.805 × 103 s 

 

  

This article is protected by copyright. All rights reserved.



xii. Figure legends: 

 

Figure 1: Schematic of model system comprising a leaf enclosed within a cuvette.  

Top: moist air enters the cuvette with flow rate 𝑢𝑢𝑖𝑖𝑖𝑖  [mol moist air s-1] , humidity 𝑤𝑤𝑖𝑖𝑖𝑖 [mol 

water vapour/mol moist air], and isotope ratio 𝑅𝑅𝑖𝑖𝑖𝑖; and exits with flow rate  𝑢𝑢𝑎𝑎, humidity  𝑤𝑤𝑎𝑎, 

and isotope ratio 𝑅𝑅𝑎𝑎. The leaf of area 𝑎𝑎 [m2 ] contains water (𝑊𝑊 [mol water m-2 ]) at 𝑅𝑅𝐿𝐿 . The 
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flux into the leaf from the stem 𝐽𝐽 [mol water m-2s-1] carries source water with isotopic 

composition 𝑅𝑅𝑠𝑠 and the net flux out from it by transpiration, 𝐸𝐸  [mol water m-2 s-1], carries 

water vapour at 𝑅𝑅𝐸𝐸.  

Inset: The components of the net transpiration flux, namely the one way gross flux out (𝐸𝐸1) 

and in (E1-E) through the stomata are represented by red dashed arrows. The effect of the 

cuvette is to increase the resistance by adding the chamber resistance 𝑎𝑎/𝑢𝑢𝑎𝑎 to the stomatal 

and boundary layer resistance (𝑟𝑟𝑠𝑠 and 𝑟𝑟𝑏𝑏) in series. The gross fluxes can be thought of as a 

flux out from the leaf where humidity is 𝑤𝑤𝑖𝑖 and a flux in from the air where humidity is  

𝑤𝑤′𝑖𝑖𝑖𝑖 = 1−𝑔𝑔𝑎𝑎
1−𝑔𝑔𝑖𝑖𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖. 

The isotopic composition of water at the evaporating sites is 𝑅𝑅𝑒𝑒 and that of the intercellular 

vapour leaving the leaf (light blue) is 𝑅𝑅𝑒𝑒/𝛼𝛼+, whilst the vapour entering is 𝑅𝑅𝑖𝑖𝑖𝑖. 

 

This article is protected by copyright. All rights reserved.



Figure 2:  Enrichment responses to a step increase in the enrichment of water vapour entering 

a cuvette  𝜖𝜖𝑖𝑖𝑖𝑖, ignoring any time delay introduced by the cuvette and associated volume. 

 

Figure 3: All enrichment responses to either a step increase (as in figure 2) or step decrease in 

the enrichment of water vapour entering a cuvette,  𝜖𝜖𝑖𝑖𝑖𝑖, can be represented by a single generic 

exponential function when scaled according to Eq. 23 (ignoring any time delay introduced by 

the cuvette and associated volume, i.e. V=0). 
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Figure 4: The effect of accounting for the time delay introduced by the cuvette and associated 

volume on the response of  𝜖𝜖𝑎𝑎 and 𝜖𝜖𝐿𝐿 for the example illustrated in figure 2 (a step increase 

in 𝜖𝜖𝑖𝑖𝑖𝑖 at t=0).  
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 𝜖𝜖𝑎𝑎 (black dash) and 𝜖𝜖𝐿𝐿(green dash) are reproduced from figure 2 and ignore the time delay 

introduced by the cuvette and associated volume (i.e  V=0 and  τ𝑎𝑎 = 0). The series of 

curves 𝜖𝜖𝑎𝑎 (red) and 𝜖𝜖𝐿𝐿(blue) are produced using equation A43 and A44, respectively, account 

for a range of characteristic times, 𝜏𝜏𝑎𝑎 related to a non-zero volume, V. 
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Appendix 1: Proof that 

𝒂𝒂𝒂𝒂
𝒖𝒖𝒂𝒂

 =  
𝒘𝒘𝒂𝒂 − 𝒘𝒘𝒊𝒊𝒊𝒊

(𝟏𝟏 − 𝒘𝒘𝒊𝒊𝒊𝒊)
 

Conservation of water gives 

𝑢𝑢𝑖𝑖𝑖𝑖.𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑎𝑎 = 𝑢𝑢𝑎𝑎.𝑤𝑤𝑎𝑎   (A1) 

where 𝑢𝑢𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑎𝑎 are the flow rates (mol moist air s-1) into and out of the chamber, and 𝑤𝑤𝑖𝑖𝑖𝑖 

and 𝑤𝑤𝑎𝑎 (mol water vapour/mol moist air) are the incoming and ambient (outgoing in a well-

mixed chamber) humidities. It is convenient to replace 𝑢𝑢𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑎𝑎 by the flow rates of dry air, 

𝑢𝑢𝑑𝑑, using 𝑢𝑢𝑑𝑑/(1 − 𝑤𝑤𝑖𝑖𝑖𝑖) and 𝑢𝑢𝑑𝑑/(1 − 𝑤𝑤𝑎𝑎), respectively. Eq (A1) becomes 

𝑎𝑎𝑎𝑎 =
𝑢𝑢𝑑𝑑 .𝑤𝑤𝑎𝑎
1 − 𝑤𝑤𝑎𝑎

−
𝑢𝑢𝑑𝑑 .𝑤𝑤𝑖𝑖𝑖𝑖

1 − 𝑤𝑤𝑖𝑖𝑖𝑖
 

Dividing through by 𝑢𝑢𝑑𝑑 and bringing the RHS to a common denominator, we obtain 

𝑎𝑎𝑎𝑎
𝑢𝑢𝑑𝑑

 =  
𝑤𝑤𝑎𝑎 − 𝑤𝑤𝑖𝑖𝑖𝑖

(1 − 𝑤𝑤𝑎𝑎)(1− 𝑤𝑤𝑖𝑖𝑖𝑖)
 

And converting 𝑢𝑢𝑑𝑑 back to 𝑢𝑢𝑎𝑎 we obtain 

𝑎𝑎𝑎𝑎
𝑢𝑢𝑎𝑎

 =  𝑤𝑤𝑎𝑎−𝑤𝑤𝑖𝑖𝑖𝑖
(1−𝑤𝑤𝑖𝑖𝑖𝑖)

          (A5) 

Appendix 2: Including time delay introduced by cuvette and associated volume 

Following the theory in the main text, Equation (6) is unchanged.  

𝑅𝑅𝑎𝑎𝑎𝑎 =
𝑅𝑅𝑒𝑒𝑤𝑤𝑖𝑖
𝛼𝛼+

−𝑅𝑅𝑎𝑎𝑤𝑤𝑎𝑎
𝛼𝛼𝑠𝑠𝑟𝑟𝑠𝑠+𝛼𝛼𝑏𝑏𝑟𝑟𝑏𝑏

    .      (6) 

Equation (7) is replaced by  
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𝑉𝑉 𝑑𝑑(𝑅𝑅𝑎𝑎𝑤𝑤𝑎𝑎)
𝑑𝑑𝑑𝑑

+ 𝑢𝑢𝑎𝑎𝑅𝑅𝑎𝑎𝑤𝑤𝑎𝑎 = 𝑢𝑢𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑅𝑅𝑎𝑎𝑎𝑎    ,      (A7) 

where V mol is the volume of the chamber, and (8) by 

𝑅𝑅𝑎𝑎𝑤𝑤𝑎𝑎 = 1−𝑤𝑤𝑎𝑎
1−𝑤𝑤𝑖𝑖𝑖𝑖

𝑅𝑅𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑅𝑅𝐸𝐸𝑎𝑎
𝑢𝑢𝑎𝑎

− 𝑉𝑉
𝑢𝑢𝑎𝑎

𝑑𝑑(𝑅𝑅𝑎𝑎𝑤𝑤𝑎𝑎)
𝑑𝑑𝑑𝑑

 .     (A8) 

Dividing through by 𝑅𝑅𝑆𝑆 

(1 +∈𝑎𝑎)𝑤𝑤𝑎𝑎 =
1 − 𝑤𝑤𝑎𝑎
1 − 𝑤𝑤𝑖𝑖𝑖𝑖

�1 +∈𝑖𝑖𝑖𝑖�𝑤𝑤𝑖𝑖𝑖𝑖 +
𝑎𝑎(1 +∈𝑎𝑎)𝑎𝑎

𝑢𝑢𝑎𝑎
−
𝑉𝑉
𝑢𝑢𝑎𝑎
𝑑𝑑((1 +∈𝑎𝑎)𝑤𝑤𝑎𝑎)

𝑑𝑑𝑑𝑑
 

 

Substituting (A8) into (6) and rearranging, 

𝑅𝑅𝑎𝑎𝑎𝑎 =
𝑅𝑅𝑒𝑒𝑤𝑤𝑖𝑖 
𝛼𝛼+

 − 1−𝑤𝑤𝑎𝑎1−𝑤𝑤𝑖𝑖𝑖𝑖
𝑅𝑅𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖+

𝑉𝑉
𝑢𝑢𝑎𝑎

𝑑𝑑(𝑅𝑅𝑎𝑎𝑤𝑤𝑎𝑎)
𝑑𝑑𝑑𝑑

𝛼𝛼𝑠𝑠𝑟𝑟𝑠𝑠+𝛼𝛼𝑏𝑏𝑟𝑟𝑏𝑏+𝑎𝑎/𝑢𝑢𝑎𝑎
   = 

𝑅𝑅𝑒𝑒𝑤𝑤𝑖𝑖
𝛼𝛼+

 − 1−𝑤𝑤𝑎𝑎1−𝑤𝑤𝑖𝑖𝑖𝑖
𝑅𝑅𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖+ 𝑉𝑉𝑢𝑢𝑎𝑎

𝑑𝑑(𝑅𝑅𝑎𝑎𝑤𝑤𝑎𝑎)
𝑑𝑑𝑑𝑑

𝛴𝛴𝛼𝛼𝑟𝑟
 .   (A9, A10) 

In the steady state, the transpiration has the isotopic composition of the source water, and so 

(11) is unchanged 

𝑅𝑅𝑆𝑆𝑎𝑎 =
𝑅𝑅𝑒𝑒𝑠𝑠𝑤𝑤𝑖𝑖
𝛼𝛼+

 − 1−𝑤𝑤𝑎𝑎1−𝑤𝑤𝑖𝑖𝑖𝑖
𝑅𝑅𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖

𝛴𝛴𝛼𝛼𝑟𝑟
 .        (11) 

Subtracting the steady-state equation (11) from the transient equation (A9) 

(𝑅𝑅𝑎𝑎 − 𝑅𝑅𝑆𝑆)𝑎𝑎 =
(𝑅𝑅𝑒𝑒−𝑅𝑅𝑒𝑒𝑠𝑠)𝑤𝑤𝑖𝑖

𝛼𝛼+
+ 𝑉𝑉𝑢𝑢𝑎𝑎

𝑑𝑑(𝑅𝑅𝑎𝑎𝑤𝑤𝑎𝑎)
𝑑𝑑𝑑𝑑

𝛴𝛴𝛼𝛼𝑟𝑟
  .     (A12) 

Dividing through by 𝑅𝑅𝑆𝑆 

∈𝑎𝑎 𝑎𝑎 =
(∈𝑒𝑒−∈𝑒𝑒𝑠𝑠)𝑤𝑤𝑖𝑖/𝛼𝛼++ 𝑉𝑉𝑢𝑢𝑎𝑎

𝑑𝑑((1+∈𝑎𝑎)𝑤𝑤𝑎𝑎)
𝑑𝑑𝑑𝑑

𝛴𝛴𝛼𝛼𝑟𝑟
  ,        

and again assuming 𝑤𝑤𝑎𝑎 is constant 

∈𝑎𝑎 𝑎𝑎 =
(∈𝑒𝑒−∈𝑒𝑒𝑠𝑠)𝑤𝑤𝑖𝑖/𝛼𝛼++ 𝑉𝑉𝑢𝑢𝑎𝑎

𝑤𝑤𝑎𝑎.𝑑𝑑∈𝑎𝑎
𝑑𝑑𝑑𝑑

𝛴𝛴𝛼𝛼𝑟𝑟
  .     (A13) 
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Again we assume 

∈𝑒𝑒
∈𝐿𝐿

= ∈𝑒𝑒𝑠𝑠
∈𝐿𝐿𝑠𝑠

= 𝑝𝑝,            (14)  

so that 

∈𝑎𝑎 𝑎𝑎 =
𝑝𝑝(∈𝐿𝐿−∈𝐿𝐿𝑠𝑠)𝑤𝑤𝑖𝑖/𝛼𝛼++ 𝑉𝑉𝑢𝑢𝑎𝑎

𝑤𝑤𝑎𝑎.𝑑𝑑∈𝑎𝑎
𝑑𝑑𝑑𝑑

𝛴𝛴𝛼𝛼𝑟𝑟
 .      (A15) 

The rate of change of ‘isostorage’ is 

𝑊𝑊
𝑑𝑑 ∈𝐿𝐿
𝑑𝑑𝑑𝑑

= −∈𝑎𝑎 𝑎𝑎                                                                                             (16) 

= −
𝑝𝑝(∈𝐿𝐿−∈𝐿𝐿𝑠𝑠)𝑤𝑤𝑖𝑖/𝛼𝛼++ 𝑉𝑉𝑢𝑢𝑎𝑎

𝑤𝑤𝑎𝑎.𝑑𝑑∈𝑎𝑎
𝑑𝑑𝑑𝑑

𝛴𝛴𝛼𝛼𝑟𝑟
      A17 

or 

𝑑𝑑∈𝐿𝐿
𝑑𝑑𝑑𝑑

+  𝑉𝑉
𝑢𝑢𝑎𝑎

𝑤𝑤𝑎𝑎
𝛴𝛴𝛼𝛼𝑟𝑟.𝑊𝑊 

𝑑𝑑∈𝑎𝑎
𝑑𝑑𝑑𝑑

= − 𝑝𝑝𝑤𝑤𝑖𝑖
𝛼𝛼+𝛴𝛴𝛼𝛼𝑟𝑟.𝑊𝑊

(∈𝐿𝐿−∈𝐿𝐿𝐿𝐿) ,  𝑑𝑑∈𝐿𝐿
𝑑𝑑𝑑𝑑

+ 𝑣𝑣 𝑑𝑑∈𝑎𝑎
𝑑𝑑𝑑𝑑

= = −  1
𝜏𝜏

(∈𝐿𝐿−∈𝐿𝐿𝐿𝐿) 

         (A18a) 

where, as before, 

𝜏𝜏 = 𝑊𝑊α+𝛴𝛴𝛼𝛼𝑟𝑟
𝑝𝑝.𝑤𝑤𝑖𝑖

=
𝑊𝑊(𝛼𝛼𝑏𝑏.𝑟𝑟𝑏𝑏+𝛼𝛼𝑠𝑠.𝑟𝑟𝑠𝑠+

𝑎𝑎
𝑢𝑢𝑎𝑎

)
𝑝𝑝.𝑤𝑤𝑖𝑖
α+

= 𝑊𝑊.𝛼𝛼𝑘𝑘.α+

𝑝𝑝.𝑎𝑎1
        (19) 

and the complicating factor is 

𝑣𝑣 = 𝑉𝑉
𝑢𝑢𝑎𝑎

𝑤𝑤𝑎𝑎
𝛴𝛴𝛼𝛼𝑟𝑟.𝑊𝑊 

           (A18b) 

which has a characteristic time, 𝜏𝜏𝑎𝑎, given by  

𝜏𝜏𝑎𝑎 = 𝑉𝑉/𝑢𝑢𝑎𝑎 .         (A18c) 

This article is protected by copyright. All rights reserved.



This can be seen more clearly by solving for ∈𝑎𝑎 rather than ∈𝐿𝐿, so rewriting (A8) 

𝑎𝑎𝑅𝑅𝐸𝐸𝑎𝑎
𝑢𝑢𝑎𝑎

= 𝑅𝑅𝑎𝑎𝑤𝑤𝑎𝑎 −
1−𝑤𝑤𝑎𝑎
1−𝑤𝑤𝑖𝑖𝑖𝑖

𝑅𝑅𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑉𝑉
𝑢𝑢𝑎𝑎

𝑑𝑑(𝑅𝑅𝑎𝑎𝑤𝑤𝑎𝑎)
𝑑𝑑𝑑𝑑

 . 

𝑎𝑎(1+∈𝐸𝐸)𝑎𝑎
𝑢𝑢𝑎𝑎

= (1 +∈𝑎𝑎)𝑤𝑤𝑎𝑎 −
1−𝑤𝑤𝑎𝑎
1−𝑤𝑤𝑖𝑖𝑖𝑖

(1 +∈𝑖𝑖𝑖𝑖)𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑉𝑉
𝑢𝑢𝑎𝑎

𝑑𝑑((1+∈𝑎𝑎)𝑤𝑤𝑎𝑎)
𝑑𝑑𝑑𝑑

  

Subtracting Eq (A5) 

𝑎𝑎∈𝐸𝐸𝑎𝑎
𝑢𝑢𝑎𝑎

= (1 +∈𝑎𝑎)𝑤𝑤𝑎𝑎 −
𝑤𝑤𝑎𝑎−𝑤𝑤𝑖𝑖𝑖𝑖
(1−𝑤𝑤𝑖𝑖𝑖𝑖)

− 1−𝑤𝑤𝑎𝑎
1−𝑤𝑤𝑖𝑖𝑖𝑖

(1 +∈𝑖𝑖𝑖𝑖)𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑉𝑉
𝑢𝑢𝑎𝑎

𝑤𝑤𝑎𝑎 𝑑𝑑∈𝑎𝑎
𝑑𝑑𝑑𝑑

  

=∈𝑎𝑎 𝑤𝑤𝑎𝑎 +
𝑤𝑤𝑎𝑎 − 𝑤𝑤𝑎𝑎𝑤𝑤𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑎𝑎 + 𝑤𝑤𝑖𝑖𝑖𝑖

(1− 𝑤𝑤𝑖𝑖𝑖𝑖)
−

1 − 𝑤𝑤𝑎𝑎
1 − 𝑤𝑤𝑖𝑖𝑖𝑖

(1 +∈𝑖𝑖𝑖𝑖)𝑤𝑤𝑖𝑖𝑖𝑖 +
𝑉𝑉
𝑢𝑢𝑎𝑎
𝑤𝑤𝑎𝑎 𝑑𝑑 ∈𝑎𝑎
𝑑𝑑𝑑𝑑

 

=∈𝑎𝑎 𝑤𝑤𝑎𝑎 +
𝑤𝑤𝑖𝑖𝑖𝑖(1− 𝑤𝑤𝑎𝑎)

(1− 𝑤𝑤𝑖𝑖𝑖𝑖)
−

1 − 𝑤𝑤𝑎𝑎
1 − 𝑤𝑤𝑖𝑖𝑖𝑖

(1 +∈𝑖𝑖𝑖𝑖)𝑤𝑤𝑖𝑖𝑖𝑖 +
𝑉𝑉
𝑢𝑢𝑎𝑎
𝑤𝑤𝑎𝑎 𝑑𝑑 ∈𝑎𝑎
𝑑𝑑𝑑𝑑

 

=∈𝑎𝑎 𝑤𝑤𝑎𝑎 −
1 − 𝑤𝑤𝑎𝑎
1 − 𝑤𝑤𝑖𝑖𝑖𝑖

∈𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖 +
𝑉𝑉
𝑢𝑢𝑎𝑎
𝑤𝑤𝑎𝑎 𝑑𝑑 ∈𝑎𝑎
𝑑𝑑𝑑𝑑

 

 

∈𝑎𝑎 𝑎𝑎 = 𝑢𝑢𝑎𝑎
𝑎𝑎
∈𝑎𝑎 𝑤𝑤𝑎𝑎 −

𝑢𝑢𝑎𝑎
𝑎𝑎

1−𝑤𝑤𝑎𝑎
1−𝑤𝑤𝑖𝑖𝑖𝑖

∈𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑉𝑉
𝑎𝑎
𝑤𝑤𝑎𝑎 𝑑𝑑∈𝑎𝑎
𝑑𝑑𝑑𝑑

      (A20) 

In the steady state 

∈𝑎𝑎𝐿𝐿 𝑎𝑎 = 𝑢𝑢𝑎𝑎
𝑎𝑎
∈𝑎𝑎𝐿𝐿 𝑤𝑤𝑎𝑎 −

𝑢𝑢𝑎𝑎
𝑎𝑎

1−𝑤𝑤𝑎𝑎
1−𝑤𝑤𝑖𝑖𝑖𝑖

∈𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖 . 

Subtracting the steady state  

∈𝑎𝑎 𝑎𝑎 = 𝑢𝑢𝑎𝑎
𝑎𝑎

(∈𝑎𝑎−∈𝑎𝑎𝐿𝐿)𝑤𝑤𝑎𝑎 + 𝑉𝑉
𝑎𝑎
𝑤𝑤𝑎𝑎 𝑑𝑑∈𝑎𝑎
𝑑𝑑𝑑𝑑

  .      (A21) 

Inserting in Eqn (16) 
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𝑊𝑊
𝑑𝑑 ∈𝐿𝐿
𝑑𝑑𝑑𝑑

= −
𝑢𝑢𝑎𝑎
𝑎𝑎

(∈𝑎𝑎−∈𝑎𝑎𝐿𝐿)𝑤𝑤𝑎𝑎 −
𝑉𝑉
𝑎𝑎
𝑤𝑤𝑎𝑎 𝑑𝑑 ∈𝑎𝑎
𝑑𝑑𝑑𝑑

 

and rearranging 

𝑑𝑑∈𝑎𝑎
𝑑𝑑𝑑𝑑

+ 𝑏𝑏 𝑑𝑑∈𝐿𝐿
𝑑𝑑𝑑𝑑

= − 1
𝜏𝜏𝑎𝑎

(∈𝑎𝑎−∈𝑎𝑎𝐿𝐿),                (A22) 

where 

 𝑏𝑏 = 𝑎𝑎𝑊𝑊
𝑉𝑉𝑤𝑤𝑎𝑎 

                 (A23) 

is the ratio of the amount of liquid water in the leaf to the amount of water vapour in the 

cuvette system. 

So for a very large volume chamber, with little leaf area in it, the equation would become 

𝑑𝑑∈𝑎𝑎
𝑑𝑑𝑑𝑑

= − 1
𝜏𝜏𝑎𝑎

(∈𝑎𝑎−∈𝑎𝑎𝐿𝐿)  

for which the solution would be 

∈𝑎𝑎=∈𝑎𝑎𝐿𝐿− (∈𝑎𝑎0−∈𝑎𝑎𝐿𝐿)𝑒𝑒−
𝑑𝑑
𝜏𝜏𝑎𝑎         (A24) 

The general solution to (A18a) and (A22) may be found by taking Laplace transforms. Thus 

𝑑𝑑∈𝐿𝐿
𝑑𝑑𝑑𝑑

+  𝑣𝑣 𝑑𝑑∈𝑎𝑎
𝑑𝑑𝑑𝑑

= −  1
𝜏𝜏

(∈𝐿𝐿−∈𝐿𝐿𝐿𝐿)        (A25) 

transforms to         

𝑠𝑠.∈𝐿𝐿−∈𝐿𝐿0+ 𝑣𝑣. 𝑠𝑠 ∈𝑎𝑎− 𝑣𝑣.∈𝑎𝑎𝑎𝑎= −∈𝐿𝐿
𝜏𝜏

+ ∈𝐿𝐿𝑠𝑠
𝜏𝜏.𝐿𝐿

      (A26) 

where s is the Laplace operator and the overbar denotes a transformed variable. 
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Similarly (A22) transforms to  

 s․ ∈𝑎𝑎−∈𝑎𝑎0+  𝑏𝑏. 𝑠𝑠 ∈𝐿𝐿− 𝑏𝑏.∈𝐿𝐿0= − ∈𝑎𝑎
𝜏𝜏𝑎𝑎

+ ∈𝑎𝑎𝑠𝑠
𝜏𝜏𝑎𝑎.𝐿𝐿

    (A27) 

Rearranging (A27)  

 ∈𝑎𝑎=
∈𝑎𝑎0−𝑏𝑏.𝐿𝐿.∈𝐿𝐿+𝑏𝑏.∈𝐿𝐿0+

∈𝑎𝑎𝑠𝑠
𝜏𝜏𝑎𝑎.𝑠𝑠

�s+ 1
𝜏𝜏𝑎𝑎
�

                                                     (A28) 

Substituting (A28) for ∈𝑎𝑎 in (A26) and gathering the resulting terms in ∈𝐿𝐿 

(𝑠𝑠 − 𝑣𝑣.𝐿𝐿.𝑏𝑏.𝐿𝐿

�s+ 1
𝜏𝜏𝑎𝑎
�
 + 1

𝜏𝜏
) ∈𝐿𝐿 -  ∈𝐿𝐿0+ 𝑣𝑣.𝐿𝐿

�s+ 1
𝜏𝜏𝑎𝑎
�
(∈𝑎𝑎0+ 𝑏𝑏.∈𝐿𝐿0+ ∈𝑎𝑎𝑠𝑠

𝜏𝜏𝑎𝑎.𝐿𝐿
)  − 𝑣𝑣.∈𝑎𝑎𝑎𝑎= ∈𝐿𝐿𝑠𝑠

𝜏𝜏.𝐿𝐿
              (A29) 

from which 

∈𝐿𝐿 =-  
 ∈𝐿𝐿0− 𝑣𝑣.𝑠𝑠

�s+ 1
𝜏𝜏𝑎𝑎

�
�∈𝑎𝑎0+𝑏𝑏.∈𝐿𝐿0+

∈𝑎𝑎𝑠𝑠
𝜏𝜏𝑎𝑎.𝑠𝑠�+𝑣𝑣.∈𝑎𝑎𝑎𝑎+

∈𝐿𝐿𝑠𝑠
𝜏𝜏.𝑠𝑠

(𝐿𝐿− 𝑣𝑣.𝑠𝑠.𝑏𝑏.𝑠𝑠

�s+ 1
𝜏𝜏𝑎𝑎

�
 + 1𝜏𝜏)

                         (A30) 

We see that we are creating the product �𝑠𝑠 + 1
𝜏𝜏𝑎𝑎
� (𝑠𝑠 − 𝑣𝑣.𝐿𝐿.𝑏𝑏.𝐿𝐿

�s+ 1
𝜏𝜏𝑎𝑎
�
 +  1

𝜏𝜏
)  in the denominator of the 

right-hand side. The product can be rewritten as �𝑠𝑠 +  1
𝜏𝜏𝑎𝑎
� �𝑠𝑠 + 1

𝜏𝜏
� − 𝑣𝑣. 𝑏𝑏. 𝑠𝑠2 which creates a 

quadratic form with the coefficient of s2 being less than unity, which is a nuisance in Laplace 

transforms. We overcome the problem by further rewriting the product as 

 (1 − 𝑣𝑣. 𝑏𝑏)(𝑠𝑠 − 𝑠𝑠1)(𝑠𝑠 − 𝑠𝑠2) where 𝑠𝑠1 and 𝑠𝑠2 are the roots of the quadratic equation  

𝑠𝑠2 + 1/𝜏𝜏+1/𝜏𝜏𝑎𝑎
(1−𝑣𝑣.𝑏𝑏) 𝑠𝑠 + 1

𝜏𝜏.𝜏𝜏𝑎𝑎(1−𝑣𝑣.𝑏𝑏) = 0.                             (A31) 
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Note that 𝑠𝑠1 and 𝑠𝑠2 correspond to negative, inverse time constants -1/𝜏𝜏1 and -1/𝜏𝜏2 which are 

perturbations, depending on the magnitude of 𝑣𝑣. 𝑏𝑏 = 𝑎𝑎/𝑢𝑢𝑎𝑎
𝛴𝛴𝛼𝛼𝑟𝑟

, from the unperturbed -1/𝜏𝜏 and -

1/𝜏𝜏𝑎𝑎. In other words 

 (−𝑠𝑠1)(−𝑠𝑠2) = 1
𝜏𝜏1.𝜏𝜏2

=  1
𝜏𝜏.𝜏𝜏𝑎𝑎(1−𝑣𝑣.𝑏𝑏)  =  1

𝜏𝜏.𝜏𝜏𝑎𝑎�1−
𝑎𝑎/𝑢𝑢𝑎𝑎
𝛴𝛴𝛼𝛼𝛴𝛴 �

.                  (A32𝑎𝑎) 

We note that (A31) implies 

𝜏𝜏1 = �𝜏𝜏𝑎𝑎 + 𝜏𝜏 − �(𝜏𝜏𝑎𝑎 + 𝜏𝜏)2 − 4𝜏𝜏𝑎𝑎𝜏𝜏(1 − 𝑣𝑣. 𝑏𝑏)�/2     (A32b) 

and 

𝜏𝜏2 = �𝜏𝜏𝑎𝑎 + 𝜏𝜏 + �(𝜏𝜏𝑎𝑎 + 𝜏𝜏)2 − 4𝜏𝜏𝑎𝑎𝜏𝜏(1 − 𝑣𝑣. 𝑏𝑏)�/2       (A32c). 

Thus (A30) becomes  

∈𝐿𝐿 =  
 �s+ 1

𝜏𝜏𝑎𝑎
��∈𝐿𝐿0+𝑣𝑣.∈𝑎𝑎𝑎𝑎+

∈𝐿𝐿𝑠𝑠
𝜏𝜏.𝑠𝑠 �− 𝑣𝑣.𝐿𝐿�∈𝑎𝑎0+𝑏𝑏.∈𝐿𝐿0+

∈𝑎𝑎𝑠𝑠
𝜏𝜏𝑎𝑎.𝑠𝑠�

(1−𝑣𝑣.𝑏𝑏)(𝐿𝐿−𝐿𝐿1)(𝐿𝐿−𝐿𝐿2)              .        (A33) 

We see that the limit as s→∞ of s. ∈𝐿𝐿 =   (∈𝐿𝐿0+𝑣𝑣.∈𝑎𝑎𝑎𝑎)− 𝑣𝑣.(∈𝑎𝑎0+𝑏𝑏.∈𝐿𝐿0)
(1−𝑣𝑣.𝑏𝑏)

 = ∈𝐿𝐿0, consistent with it 

being the limit as t→0 of ∈𝐿𝐿 (t). Similarly, the limit as s→0 of s. ∈𝐿𝐿 =  
 � 1𝜏𝜏𝑎𝑎

��∈𝐿𝐿𝑠𝑠𝜏𝜏 �

(1−𝑣𝑣.𝑏𝑏)(−𝐿𝐿1)(−𝐿𝐿2) which, 

using (A32) = ∈𝐿𝐿𝐿𝐿, consistent with it being the limit as t→∞ of ∈𝐿𝐿 (t). 

We rewrite (A33) for convenient application of the inverse Laplace transform: 

∈𝐿𝐿 =   (∈𝐿𝐿0+𝑣𝑣.∈𝑎𝑎𝑎𝑎)
(1−𝑣𝑣.𝑏𝑏) ․ 

 �s+ 1
𝜏𝜏𝑎𝑎
�

(𝐿𝐿−𝐿𝐿1)(𝐿𝐿−𝐿𝐿2) +
 ∈𝐿𝐿𝑠𝑠𝜏𝜏

(1−𝑣𝑣.𝑏𝑏) .
 1𝑠𝑠�s+

1
𝜏𝜏𝑎𝑎
�

(𝐿𝐿−𝐿𝐿1)(𝐿𝐿−𝐿𝐿2) - 
  𝑣𝑣.(∈𝑎𝑎0+𝑏𝑏.∈𝐿𝐿0)

(1−𝑣𝑣.𝑏𝑏) .  s
(𝐿𝐿−𝐿𝐿1)(𝐿𝐿−𝐿𝐿2) - 

  𝑣𝑣.�∈𝑎𝑎𝑠𝑠𝜏𝜏𝑎𝑎
�

(1−𝑣𝑣.𝑏𝑏)
.  1

(𝐿𝐿−𝐿𝐿1)(𝐿𝐿−𝐿𝐿2)                      (A34) 

We make use of the following elementary Laplace transformations: 
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 1
(𝐿𝐿−𝐿𝐿1)(𝐿𝐿−𝐿𝐿2) →

 𝑒𝑒𝑠𝑠2𝑑𝑑−𝑒𝑒𝑠𝑠1𝑑𝑑

(𝐿𝐿2−𝐿𝐿1)               (A35a)  

 (  𝐿𝐿
(𝐿𝐿−𝐿𝐿1)(𝐿𝐿−𝐿𝐿2) →

 𝐿𝐿2𝑒𝑒𝑠𝑠2𝑑𝑑−𝐿𝐿1𝑒𝑒𝑠𝑠1𝑑𝑑

(𝐿𝐿2−𝐿𝐿1)       (A35b) 

1
 𝐿𝐿(𝐿𝐿−𝐿𝐿1)(𝐿𝐿−𝐿𝐿2) → ∫𝑑𝑑0

 𝑒𝑒𝑠𝑠2𝑢𝑢−𝑒𝑒𝑠𝑠1𝑢𝑢

(𝐿𝐿2−𝐿𝐿1) 𝑑𝑑𝑢𝑢 = �
 1𝑠𝑠2
𝑒𝑒𝑠𝑠2𝑢𝑢− 1𝑠𝑠1

𝑒𝑒𝑠𝑠1𝑢𝑢

(𝐿𝐿2−𝐿𝐿1) �
0

𝑑𝑑

=
 1𝑠𝑠2
𝑒𝑒𝑠𝑠2𝑑𝑑− 1𝑠𝑠1

𝑒𝑒𝑠𝑠1𝑑𝑑−( 1𝑠𝑠2
− 1𝑠𝑠1

)

(𝐿𝐿2−𝐿𝐿1)     (A35c) . 

And so after transformation back to the time domain (A34) becomes 

∈𝐿𝐿 (𝑑𝑑) =   (∈𝐿𝐿0+𝑣𝑣.∈𝑎𝑎𝑎𝑎)
(1−𝑣𝑣.𝑏𝑏) ․ 

𝐿𝐿2𝑒𝑒𝑠𝑠2𝑑𝑑−𝐿𝐿1𝑒𝑒𝑠𝑠1𝑑𝑑+
1
𝜏𝜏𝑎𝑎

 �𝑒𝑒𝑠𝑠2𝑑𝑑−𝑒𝑒𝑠𝑠1𝑑𝑑�

(𝐿𝐿2−𝐿𝐿1)  

+
 ∈𝐿𝐿𝑠𝑠𝜏𝜏

(1−𝑣𝑣.𝑏𝑏) .
𝑒𝑒𝑠𝑠2𝑑𝑑−𝑒𝑒𝑠𝑠1𝑑𝑑+

 

� 1𝜏𝜏𝑎𝑎
�� 1𝑠𝑠2

𝑒𝑒𝑠𝑠2𝑑𝑑− 1
𝑠𝑠1
𝑒𝑒𝑠𝑠1𝑑𝑑−( 1𝑠𝑠2

− 1
𝑠𝑠1

)�

(𝐿𝐿2−𝐿𝐿1)  -   𝑣𝑣.(∈𝑎𝑎0+𝑏𝑏.∈𝐿𝐿0)
(1−𝑣𝑣.𝑏𝑏) .  𝐿𝐿2𝑒𝑒

𝑠𝑠2𝑑𝑑−𝐿𝐿1𝑒𝑒𝑠𝑠1𝑑𝑑

(𝐿𝐿2−𝐿𝐿1)  - 
  𝑣𝑣.�∈𝑎𝑎𝑠𝑠𝜏𝜏𝑎𝑎

�

(1−𝑣𝑣.𝑏𝑏)
.  𝑒𝑒𝑠𝑠2𝑑𝑑−𝑒𝑒𝑠𝑠1𝑑𝑑

(𝐿𝐿2−𝐿𝐿1)  .         

(A36) 

The terms in ∈𝐿𝐿0and ∈𝑎𝑎𝑎𝑎 can be simplified  

∈𝐿𝐿 (𝑑𝑑) = ∈𝐿𝐿0 ․ 𝐿𝐿2𝑒𝑒
𝑠𝑠2𝑑𝑑−𝐿𝐿1𝑒𝑒𝑠𝑠1𝑑𝑑

(𝐿𝐿2−𝐿𝐿1)  + 

 (∈𝐿𝐿0+𝑣𝑣.∈𝑎𝑎𝑎𝑎) 1
𝜏𝜏𝑎𝑎

 �𝑒𝑒𝑠𝑠2𝑑𝑑−𝑒𝑒𝑠𝑠1𝑑𝑑�

(1−𝑣𝑣.𝑏𝑏)(𝐿𝐿2−𝐿𝐿1)  + 
 ∈𝐿𝐿𝑠𝑠𝜏𝜏

(1−𝑣𝑣.𝑏𝑏) .
𝑒𝑒𝑠𝑠2𝑑𝑑−𝑒𝑒𝑠𝑠1𝑑𝑑+

 

� 1𝜏𝜏𝑎𝑎
�� 1𝑠𝑠2

𝑒𝑒𝑠𝑠2𝑑𝑑− 1
𝑠𝑠1
𝑒𝑒𝑠𝑠1𝑑𝑑−( 1𝑠𝑠2

− 1𝑠𝑠1
)�

(𝐿𝐿2−𝐿𝐿1)  - 
  𝑣𝑣.�∈𝑎𝑎𝑠𝑠𝜏𝜏𝑎𝑎

�

(1−𝑣𝑣.𝑏𝑏)
.  𝑒𝑒𝑠𝑠2𝑑𝑑−𝑒𝑒𝑠𝑠1𝑑𝑑

(𝐿𝐿2−𝐿𝐿1)  .          

And one term in ∈𝐿𝐿𝐿𝐿 can be combined with ∈𝑎𝑎𝐿𝐿 

∈𝐿𝐿 (𝑑𝑑) = ∈𝐿𝐿0 ․ 𝐿𝐿2𝑒𝑒
𝑠𝑠2𝑑𝑑−𝐿𝐿1𝑒𝑒𝑠𝑠1𝑑𝑑

(𝐿𝐿2−𝐿𝐿1) +
 (∈𝐿𝐿0+𝑣𝑣.∈𝑎𝑎𝑎𝑎) 1

𝜏𝜏𝑎𝑎
 �𝑒𝑒𝑠𝑠2𝑑𝑑−𝑒𝑒𝑠𝑠1𝑑𝑑�

(1−𝑣𝑣.𝑏𝑏)(𝐿𝐿2−𝐿𝐿1)   +
 ∈𝐿𝐿𝑠𝑠𝜏𝜏.𝜏𝜏𝑎𝑎

(1−𝑣𝑣.𝑏𝑏) .

 

� 1𝑠𝑠2
𝑒𝑒𝑠𝑠2𝑑𝑑− 1

𝑠𝑠1
𝑒𝑒𝑠𝑠1𝑑𝑑−( 1𝑠𝑠2

− 1𝑠𝑠1
)�

(𝐿𝐿2−𝐿𝐿1)  + 

  ∈𝐿𝐿𝑠𝑠𝜏𝜏 −𝑣𝑣.�∈𝑎𝑎𝑠𝑠𝜏𝜏𝑎𝑎
�

(1−𝑣𝑣.𝑏𝑏)
.  𝑒𝑒𝑠𝑠2𝑑𝑑−𝑒𝑒𝑠𝑠1𝑑𝑑

(𝐿𝐿2−𝐿𝐿1)  .          

Converting 𝑠𝑠1 to -1/𝜏𝜏1 and 𝑠𝑠2 to -1/𝜏𝜏2 ,  
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∈𝐿𝐿 (𝑑𝑑) = ∈𝐿𝐿0 ․ 1/𝜏𝜏1𝑒𝑒−t/𝜏𝜏1−1/𝜏𝜏2𝑒𝑒−t/𝜏𝜏2

(1/𝜏𝜏1−1/𝜏𝜏2)  

+
 (∈𝐿𝐿0+𝑣𝑣.∈𝑎𝑎𝑎𝑎) 1

𝜏𝜏𝑎𝑎
 �𝑒𝑒−t/𝜏𝜏2−𝑒𝑒−t/𝜏𝜏1�

(1−𝑣𝑣.𝑏𝑏)(1/𝜏𝜏1−1/𝜏𝜏2) + 
 ∈𝐿𝐿𝑠𝑠𝜏𝜏.𝜏𝜏𝑎𝑎

(1−𝑣𝑣.𝑏𝑏) .

 

� 1
−1/𝜏𝜏2

𝑒𝑒−t/𝜏𝜏2− 1
−1/𝜏𝜏1

𝑒𝑒−𝑑𝑑/𝜏𝜏1−( 1
−1/𝜏𝜏2

− 1
−1/𝜏𝜏1

)�

(1/𝜏𝜏1−1/𝜏𝜏2)  + 

  ∈𝐿𝐿𝑠𝑠𝜏𝜏 −𝑣𝑣.�∈𝑎𝑎𝑠𝑠𝜏𝜏𝑎𝑎
�

(1−𝑣𝑣.𝑏𝑏)
.  𝑒𝑒−t/𝜏𝜏2−𝑒𝑒−t/𝜏𝜏1

(1/𝜏𝜏1−1/𝜏𝜏2)  .      

Multiplying above and below by 𝜏𝜏1𝜏𝜏2     

∈𝐿𝐿 (𝑑𝑑) = ∈𝐿𝐿0 ․ 𝜏𝜏2𝑒𝑒
−t/𝜏𝜏1−𝜏𝜏1𝑒𝑒−t/𝜏𝜏2

(𝜏𝜏2−𝜏𝜏1)  +
 (∈𝐿𝐿0+𝑣𝑣.∈𝑎𝑎𝑎𝑎)𝜏𝜏1𝜏𝜏2

𝜏𝜏𝑎𝑎
 �𝑒𝑒−t/𝜏𝜏2−𝑒𝑒−t/𝜏𝜏1�

(1−𝑣𝑣.𝑏𝑏)(𝜏𝜏2−𝜏𝜏1) +

 
 ∈𝐿𝐿𝑠𝑠.𝜏𝜏1𝜏𝜏2

𝜏𝜏.𝜏𝜏𝑎𝑎
(1−𝑣𝑣.𝑏𝑏) .

 
�−𝜏𝜏2𝑒𝑒−t/𝜏𝜏2+𝜏𝜏1𝑒𝑒−𝑑𝑑/𝜏𝜏1−(−𝜏𝜏2 + 𝜏𝜏1)�

(𝜏𝜏2−𝜏𝜏1)  + 
 𝜏𝜏1𝜏𝜏2( ∈𝐿𝐿𝑠𝑠𝜏𝜏 −𝑣𝑣.�∈𝑎𝑎𝑠𝑠𝜏𝜏𝑎𝑎

�)

(1−𝑣𝑣.𝑏𝑏)
.  𝑒𝑒−t/𝜏𝜏2−𝑒𝑒−t/𝜏𝜏1

(𝜏𝜏2−𝜏𝜏1)  .         (A37) 

Making use of (A32) and for the sake of argument, let us assume that 𝜏𝜏2 is the modified 𝜏𝜏, 

and 𝜏𝜏1the modified 𝜏𝜏𝑎𝑎, so that usually 𝜏𝜏2 ≥ 𝜏𝜏1 

∈𝐿𝐿 (𝑑𝑑) = ∈𝐿𝐿0 ․ 𝜏𝜏2𝑒𝑒
−t/𝜏𝜏1−𝜏𝜏1𝑒𝑒−t/𝜏𝜏2

(𝜏𝜏2−𝜏𝜏1)  +  (∈𝐿𝐿0+𝑣𝑣.∈𝑎𝑎𝑎𝑎)𝜏𝜏 �𝑒𝑒−t/𝜏𝜏2−𝑒𝑒−t/𝜏𝜏1�
(𝜏𝜏2−𝜏𝜏1) + ∈𝐿𝐿𝐿𝐿. (1 − 𝜏𝜏2𝑒𝑒

− t
𝜏𝜏2−𝜏𝜏1𝑒𝑒

− 𝑑𝑑
𝜏𝜏1

(𝜏𝜏2−𝜏𝜏1) ) + 

𝜏𝜏. 𝜏𝜏𝑎𝑎( ∈𝐿𝐿𝑠𝑠
𝜏𝜏
− 𝑣𝑣. �∈𝑎𝑎𝑠𝑠

𝜏𝜏𝑎𝑎
�).  𝑒𝑒−t/𝜏𝜏2−𝑒𝑒−t/𝜏𝜏1

(𝜏𝜏2−𝜏𝜏1)  .           (A38) 

It is interesting to compare (A38) to the simpler form we considered earlier. To that end we 

rewrite (A38) as 

∈𝐿𝐿 (𝑑𝑑) −∈𝐿𝐿𝐿𝐿= ∈𝐿𝐿0 ․ 𝜏𝜏2𝑒𝑒
−t/𝜏𝜏1−𝜏𝜏1𝑒𝑒−t/𝜏𝜏2+𝜏𝜏 �𝑒𝑒−t/𝜏𝜏2−𝑒𝑒−t/𝜏𝜏1�

(𝜏𝜏2−𝜏𝜏1)  − ∈𝐿𝐿𝐿𝐿. (𝜏𝜏2𝑒𝑒
−t/𝜏𝜏2−𝜏𝜏1𝑒𝑒−t/𝜏𝜏1

(𝜏𝜏2−𝜏𝜏1) )   +   

𝜏𝜏. 𝜏𝜏𝑎𝑎( ∈𝐿𝐿𝑠𝑠
𝜏𝜏
− 𝑣𝑣. �∈𝑎𝑎𝑠𝑠

𝜏𝜏𝑎𝑎
�).  𝑒𝑒−t/𝜏𝜏2−𝑒𝑒−t/𝜏𝜏1

(𝜏𝜏2−𝜏𝜏1)  +  (𝑣𝑣.∈𝑎𝑎𝑎𝑎)𝜏𝜏 �𝑒𝑒−t/𝜏𝜏2−𝑒𝑒−t/𝜏𝜏1�
(𝜏𝜏2−𝜏𝜏1) .         (A39) 

Making use of (A32a) 
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∈𝐿𝐿 (𝑑𝑑) −∈𝐿𝐿𝐿𝐿= ∈𝐿𝐿0 ․ 𝜏𝜏2𝑒𝑒
−t/𝜏𝜏1−𝜏𝜏1𝑒𝑒−t/𝜏𝜏2+𝜏𝜏 �𝑒𝑒−t/𝜏𝜏2−𝑒𝑒−t/𝜏𝜏1�

(𝜏𝜏2−𝜏𝜏1)  

− ∈𝐿𝐿𝐿𝐿. (𝜏𝜏2𝑒𝑒
−t/𝜏𝜏2−𝜏𝜏1𝑒𝑒−𝑑𝑑/𝜏𝜏1−𝜏𝜏𝑎𝑎(𝑒𝑒−t/𝜏𝜏2−𝑒𝑒−𝑑𝑑/𝜏𝜏1)

(𝜏𝜏2−𝜏𝜏1) ) −  𝑣𝑣(∈𝑎𝑎𝑠𝑠−∈𝑎𝑎0)𝜏𝜏 �𝑒𝑒−t/𝜏𝜏2−𝑒𝑒−t/𝜏𝜏1�
(𝜏𝜏2−𝜏𝜏1) .         (A40) 

As volume V approaches 0, 𝑣𝑣 → 0, 𝜏𝜏𝑎𝑎→0,  𝜏𝜏1 → 0, 𝜏𝜏2→ 𝜏𝜏, b→∞ and b𝜏𝜏𝑎𝑎 remains equal to 

𝑎𝑎𝑊𝑊
𝑢𝑢𝑎𝑎𝑤𝑤𝑎𝑎 

. 

In this limit (A40) degenerates to the simpler case (Eq 25): 

∈𝐿𝐿 (𝑑𝑑) −∈𝐿𝐿𝐿𝐿=  (∈𝐿𝐿0 − ∈𝐿𝐿𝐿𝐿). 𝑒𝑒−t/𝜏𝜏․          (A41) 

The solution for ∈𝑎𝑎 (𝑑𝑑)may be found in a manner analogous to that for ∈𝐿𝐿 (Eqs (A25) to 

(A40)) and is 

∈𝑎𝑎 (𝑑𝑑) −∈𝑎𝑎𝐿𝐿=∈𝑎𝑎0.
𝜏𝜏2𝑒𝑒

− t
𝜏𝜏1−𝜏𝜏1𝑒𝑒

− t
𝜏𝜏2 + 𝜏𝜏𝑎𝑎  �𝑒𝑒−

t
𝜏𝜏2 − 𝑒𝑒−

t
𝜏𝜏1�

(𝜏𝜏2 − 𝜏𝜏1)

− ∈𝑎𝑎𝐿𝐿.�
𝜏𝜏2𝑒𝑒

− t
𝜏𝜏2 − 𝜏𝜏1𝑒𝑒

− t
𝜏𝜏1 − 𝜏𝜏(𝑒𝑒−

t
𝜏𝜏2 − 𝑒𝑒−

𝑑𝑑
𝜏𝜏1)

(𝜏𝜏2 − 𝜏𝜏1) � 

                                                         −(∈𝐿𝐿𝐿𝐿−∈𝐿𝐿0) 𝑏𝑏𝜏𝜏𝑎𝑎 �𝑒𝑒−t/𝜏𝜏2−𝑒𝑒−t/𝜏𝜏1�
(𝜏𝜏2−𝜏𝜏1)  .           (A42) 

Eqs (A22) and (A25) are symmetrical, with the following correspondences going from ∈𝑎𝑎 to 

∈𝐿𝐿 : ∈𝑎𝑎→∈𝐿𝐿 ,∈𝑎𝑎𝐿𝐿→∈𝐿𝐿𝐿𝐿,∈𝑎𝑎0→∈𝐿𝐿0, 𝜏𝜏𝑎𝑎 → 𝜏𝜏, 𝑏𝑏 → 𝑣𝑣. Making these substitutions in (A42), but 

keeping the same notation of 𝜏𝜏1 and 𝜏𝜏2, we obtain (A40) (and vice versa), which is a 

convenient check on the derivations.  

Eq (A42) seems rather complicated but can be written as ∈𝑎𝑎𝐿𝐿 minus the sum of two 

exponentials: 
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∈𝑎𝑎 (𝑑𝑑) =∈𝑎𝑎𝐿𝐿− �𝛽𝛽𝑒𝑒−
t
𝜏𝜏1 +  𝛾𝛾𝑒𝑒−

t
𝜏𝜏2� (𝜏𝜏2 − 𝜏𝜏1)�      (A43a) 

 where,                

𝛽𝛽 =  ∈𝑎𝑎𝐿𝐿 (𝜏𝜏 − 𝜏𝜏1 ) −∈𝑎𝑎0 (𝜏𝜏2 − 𝜏𝜏𝑎𝑎) −  (∈𝐿𝐿𝐿𝐿−∈𝐿𝐿0)𝑏𝑏𝜏𝜏𝑎𝑎   (A43b) 

γ =  ∈𝑎𝑎𝐿𝐿 (𝜏𝜏 − 𝜏𝜏2)−∈𝑎𝑎0 (𝜏𝜏1 − 𝜏𝜏𝑎𝑎) − (∈𝐿𝐿𝐿𝐿−∈𝐿𝐿0)𝑏𝑏𝜏𝜏𝑎𝑎  (A43c) 

 

Similarly, the expression for ∈𝐿𝐿 (𝑑𝑑) may be rewritten as ∈𝐿𝐿𝐿𝐿 minus the sum of two 

exponentials: 

∈𝐿𝐿 (𝑑𝑑) =∈𝐿𝐿𝐿𝐿  −�𝜔𝜔𝑒𝑒−
t
𝜏𝜏1 +  𝜃𝜃𝑒𝑒−

t
𝜏𝜏2� (𝜏𝜏2 − 𝜏𝜏1)�    (A44a) 

where 

𝜔𝜔 =  ∈𝐿𝐿𝐿𝐿 (𝜏𝜏𝑎𝑎 − 𝜏𝜏1 ) −∈𝐿𝐿0 (𝜏𝜏 − 𝜏𝜏2) −  (∈𝑎𝑎𝐿𝐿−∈𝑎𝑎0)𝜐𝜐𝜏𝜏    (A44b) 

θ = ∈𝐿𝐿𝐿𝐿 (𝜏𝜏2 − 𝜏𝜏𝑎𝑎) − ∈𝐿𝐿0 (𝜏𝜏1 − 𝜏𝜏) − (∈𝑎𝑎0−∈𝑎𝑎𝐿𝐿)𝜐𝜐𝜏𝜏  (A44c) 

As volume V approaches 0, v→0,   𝜏𝜏𝑎𝑎→0,  𝜏𝜏1 → 0, 𝜏𝜏2→ 𝜏𝜏, b→∞ and b𝜏𝜏𝑎𝑎 remains equal to 

𝑎𝑎𝑊𝑊
𝑢𝑢𝑎𝑎𝑤𝑤𝑎𝑎 

. 

In this limit (A44) recovers the simple case in Eq (18) of the main text when volume V is zero  

and (A43) becomes 

∈𝑎𝑎 (𝑑𝑑) =∈𝑎𝑎𝐿𝐿+ [(∈𝐿𝐿0−∈𝐿𝐿𝐿𝐿) 𝑏𝑏τ𝑎𝑎
𝜏𝜏

]𝑒𝑒
− 𝑑𝑑𝜏𝜏 ,   (A45) 

and we need to know the relationship between ∈𝐿𝐿0−∈𝐿𝐿𝐿𝐿 and ∈𝑎𝑎0−∈𝑎𝑎𝐿𝐿. 
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From (A45) at t=0 

∈𝑎𝑎0−∈𝑎𝑎𝐿𝐿= (∈𝐿𝐿0−∈𝐿𝐿𝐿𝐿)
𝑏𝑏τ𝑎𝑎
𝜏𝜏

 

Thus, as volume V approaches 0, (A43) becomes 

∈𝑎𝑎 (𝑑𝑑) =∈𝑎𝑎𝐿𝐿+ (∈𝑎𝑎0−∈𝑎𝑎𝐿𝐿)𝑒𝑒
− 𝑑𝑑𝜏𝜏 . 

identical to the simple case in Eq (23) of the main text when volume V is zero. 
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SUMMARY STATEMENT 

The transient responses of isotopic composition of water in leaves and transpiration depends on the 

leaf water content and the one way flux of water vapour out of the leaves, not the net transpiration 

rate. 
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